北师大版七年级(下册)数学第一章导学案.doc
如有侵权,请联系网站删除,仅供学习与交流北师大版七年级(下册)数学第一章导学案【精品文档】第 25 页第一章 整式的乘除第一节 同底数幂的乘法【学习目标】1理解同底数幂的乘法法则2运用同底数幂的乘法法则解决一些实际问题3在进一步体会幂的意义时,发展推理能力和有条理的表达能力4通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到一般,一般到特殊的认知规律【学习方法】自主探究与合作交流【学习重点】正确理解同底数幂的乘法法则【学习难点】正确理解和应用同底数幂的乘法法则.【学习过程】模块一 预习反馈一 学习准备1.其中a叫做_,n叫做_,叫做_。2. 二 教材解读1.计算下列各式:(1)(2)(3)(m、n都是正整数)。(4)通过(1)(2)(3)你发现了什么?_2等于什么?和呢?(m、n都是正整数)解:=_=_3.如果m、n都是正整数,那么等于什么?为什么?=(_)×(_)=_ 归纳:am · an = (m、n为正整数)即同底数幂相乘, 不变,指数 4. _5.例题观摩(1) (2) 6.实践练习:(1)=_ (2)(3) (4) 模块二 合作探究1.下列各式(结果以幂的形式表示):(1)(a+b)3 · (a+b)4 (2)(x-y)7(y-x). 2.10m=16,10n=20,求10m+n的值.3.如果x2m+1 · x7-m =x12,求m的值. 模块三 形成提升1(1) (2) (3) (4)2.(1)(m-n)3(n-m) (2)(x-y)3(x-y)5.3.已知am3,am8,则am+n的值。模块四 小结反思本节知识点:am · an = (m、n为正整数)即同底数幂相乘, 不变,指数 我的困惑:_第二节 幂的乘方与积的乘方(1)【学习目标】1、经历探索幂的乘方性质,进一步体会幂的乘方。2、了解幂的乘方运算性质,能利用性质进行计算和解决实际问题。 3、经历自主探索冪的乘方运算性质的过程,能用代数式和文字准确表达性质;通过由特殊到一般的猜想与说理、验证,培养说理能力和归纳表达能力。【学习方法】 自主探究与合作交流【学习重点】冪的乘方运算性质。【学习难点】冪的乘方运算性质的灵活运用。【学习过程】模块一 预习反馈一学习准备1.幂的意义:表示_个_连乘,其中a是_,n 是_.2. am · an = (m、n为正整数)即同底数幂相乘, 不变,指数 3.计算下列各式,结果用幂的形式表示。(1)=_(2) =_(3) =_(4) =_二解读教材1.你知道等于多少吗?=(根据幂的意义) = (根据同底数幂的乘法)2.计算下列各式,并说明理由。(1)=( )×( )×( )×( )=(2)=( )×( )×( )=(3)=( )×( )=(4)=( )×( )××( )×( )=_(m、n为正整数) 。冪的乘方,_ 。即:3.例题观摩(1) (2)4.实践练习:计算: -(5) x4·x3(6)(7)x2·x4+(x3)2 (8)(-a3)2· (-a4)3解:(1)=_(2) =_ (3) =_ -=_(5) x4·x3=_ (6)=_(7)x2·x4+(x3)2 (8)(-a3)2· (-a4)3模块二 合作探究1.已知(m、n是正整数).求 的值. 2.已知,求的值。模块三 形成提升 http:/w w 1.计算:(5) (6) (7) (8)2.已知,求3.已知求模块四 小结反思本节知识点:=_(m、n为正整数) 。冪的乘方,_ 。我的困惑:_第二节 幂的乘方与积的乘方(2)【学习目标】1.探索积的乘方的运算性质,在推理得出积的乘方的运算性质的过程中,让学生领会这个性质,并能应用解决数学问题。2.通过探究合作经历探索积的乘方的过程,发展推理能力和有条理的表达能力,培养自己的综合能力;在逆用公式中培养逆向思维能力。【学习方法】 自主探究与合作交流【学习重点】积的乘方的运算.【学习难点】正确区别幂的乘方与积的乘方的异同.【学习过程】模块一 预习反馈一 学习准备1.幂的意义:=_(左边有n个a).2. 同底数幂相乘:= (m、n为正整数)( 不变,指数_)。3.冪的乘方,_ 即=_(m、n为正整数)二解读教材1.做一做(1)=( )×( )×( )×( )=(2)=( )×( )××( )×( )=(3)=( )×( )××( )×( )=积的乘方:对于任意底数a、b与任意正整数n,(ab)=_=_= a b 。即积的乘方等于 。积的乘方公式的逆用:a b = 2.例题观摩(1)(2)(3)3.实践练习(1)(ab)6 (2)(-a)3 (3)(-2x)4 (4)(ab)3 (5)(-xy)7 (6)(-3abc)2 (7)(-5)32 (8)(-t)53模块二 合作探究1.用简便方法计算:(1) (2) (3)2.已知,求的值。模块三 形成提升1.计算 (2) (4)-4(x-y)23 (5) (6) (7)2.计算(1) (2) (3)模块四 小结反思本节知识点:1.积的乘方:对于任意底数a、b与任意正整数n,(ab)= a b 。即积的乘方等于 。2.积的乘方公式的逆用:a b = 我的困惑:_第三节 同底数幂的除法(1)【学习目标】1.熟练掌握同底数幂的除法运算法则 .2.会用同底数幂的除法性质进行计算.3.知道任何不等于0的数的0次方都等于1.知道负指数的意义。【学习方法】自主探究与合作交流【学习重点】会进行同底数幂的除法运算。【学习难点】同底数幂的除法法则的总结及运用。【学习过程】模块一 预习反馈一 学习准备(1)同底数幂相乘,_不变,_相加. (m,n是正整数)(2)幂的乘方,_不变,_相乘.(m,n是正整数)(3)积的乘方等于积中各因数乘方的_. (n是正整数)二 解读教材1.你知道怎样算吗?先将幂还原成大数再用分数的约分来计算:2.计算下列各式,并说明理由(m>n)归纳:同底数幂的运算法则:(a0,m,n是正整数,且m>n)。即:同底数幂的除法,底数不变,指数相减。3.实践练习:(1) 4.猜一猜:(1)下面的括号内该填入什么数?你是怎么想的?与同伴交流: 10()=1 2()=1 10()=0.1 2()= 10()=0.01 2()= 10()=0.001 2()= (2)你有什么发现?能用符号表示你的发现吗?归纳:_(其中a_); (其中 )你认为这个规定合理吗?为什么?实践练习:1.计算:用小数或分数分别表示下列各数:2. 议一议:计算下列各式,你有什么发现?与同伴交流规律:_模块二 合作探究1.计算(1) (2) (3)2.解答题(1). (2).若无意义,且,求的值模块三 形成提升1计算: 2.若模块四 小结反思1.本节知识点:同底数幂的除法: am÷an= ( m,n都是 ,对a什么要求2._(其中a_)3. (其中 )我的困惑:_第三节 同底数幂的除法(2)【学习目标】1.通过分析、交流、合作,加深对较小数的认知,发展数感。 2.能用科学技术法表示绝对值较小的数。【学习方法】自主探究与合作交流【学习重难点】用科学记数法表示绝对值较小的数。【学习过程】模块一 预习反馈一学习准备1.单位换算:1米=10分米,1分米=10厘米,1厘米=10毫米;另外规定,1毫米=1000微米,1微米=1000纳米2. 科学记数法的表示形式_,其中a与n的取值范围:_,n为正整数.3.纳米是一种长度单位, 1米=1,000,000,000纳米,用科学记数法表示1,000,000,000=_。二解读教材1.正的纯小数的科学记数法表示:0.001= = 0.000 000 001= = 0.000 000 0072= = 规律:归纳:一般地把一个绝对值小于1的数也可以表示成的形式,其中,n为负整数,等于非零的数前面的连续零的个数。w W w .X k b 1. c O m2.例题观摩:用科学计数法表示下列各数(1)0.0000000001 (2)0.0000000000029 (3)0.000000001295(1) (2)(3)3.实践练习:用科学计数法表示下列各数(1)0.00000072 (2)0.00000861 (3)0.00000000000003425解:(1)=_ (2) =_ (3)=_模块二 合作探究1.大多数花粉的直径约为20微米到50微米,这相当于多少米?2.估计下例事物的大小(1)一只猫的体长大约是多少千米?(约为35厘米)(2)一个鸡蛋的重量约多少吨?(约为60克) 模块三 形成提升1.把下列各数用科学记数法表示: 0.000 000 001 65; 0.000 36微米,相当于多少米? 600纳米,相当于多少米?2.冠状病毒的直径为1.2×102 纳米,用科学记数法表示为 米3.人的头发直径为70微米=_ _米4.将用小数表述为( )A.0.00000000562 B.0.0000000562 C.0.000000562 D.0.00000000005625.在日本核电站事故期间,我国某监测点检测到极微量的人工放射性核素碘-131.其浓度为0.0000963贝克/立方米。数据“0.0000963”用科学记数法表示为 。模块四 小结反思本节知识点:一般地把一个绝对值小于1的数也可以表示成 的形式,其中 ,n为负整数,等于非零的数前面的连续零的个数。我的困惑:_第四节 整式的乘法(一)【学习目标】1.经历探索整式乘法运算法则的过程,发展观察,归纳,猜想,验证等能力。2.会进行单项式与单项式的乘法运算。3.培养同学们的语言表达能力,逻辑思维能力。【学习方法】自主探究与合作交流【学习重点】单项式与单项式的乘法运算。【学习难点】单项式乘法法则有关系数和指数在计算中的不同规定。【学习过程】模块一 预习反馈一学习准备1.复习幂的运算性质(1)同底数幂相乘,_不变,_相加. (m,n是正整数)(2)幂的乘方,_不变,_相乘.(m,n是正整数)(3)积的乘方等于积中各因数乘方的_. (n是正整数)(4)同底数幂相除,_不变,指数_. 2.计算下列各题:(1)(a5)5 (2) (a2b)3 (3) (2a)2(3a2)3 (4) (y n)2 y n-1(1)_ (2)_ (3)_(4)_ _ _ _ _ _ _ 解:二解读教材1. 七年级三班举办新年才艺展示,小明的作品是用同样大小的纸精心制作的两幅剪贴画,如右图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有 米的空白.(1) 第一幅画的画面面积是_平 方米;第二幅是_平方米。(2) 若把图中的1.2x改为mx,其他不变,则第一幅画的画面面积又是_平方米;第二幅又是_平方米。2.做一做(1)3a2b·2 ab3和(xyz)·y2z又等于什么?你是怎样计算的? (2)如何进行单项式乘单项式的运算?_归纳:单项式乘以单项式法则:单项式与单项式相乘,把它们的_、_分别相乘,其余字母连同它的_不变,作为积的_。(3)在你探索单项式乘法运算法则的过程中,运用了哪些运算律和运算法则?_2.例题观摩解:原式= 原式=_ =_ =_3.实践练习(1) (2) (3) (4) 模块二 合作探究1. 计算(1) (2)(ab2c)2 ·(abc2)·(12a3b)2.若单项式与的和是单项式,求它们的积。模块三 形成提升1计算(1) (2) (3)(4) (5)(1.3×108)×(1.3×105)2.若 ,求m+n的值。模块四 小结反思一、本节知识点:单项式乘以单项式法则:单项式与单项式相乘,把它们的_、_分别相乘,其余字母连同它的_不变,作为积的_。二、我的困惑: 第四节 整式的乘法(2)【学习目标】掌握单项式与多项式相乘的法则,知道单项式乘以多项式的结果仍然是多项式.会进行单项式乘以多项式的计算以及含有单项式乘以多项式的混合运算.通过例题教学,培养灵活运用所学知识分析问题、解决问题的能力.【学习方法】自主探究与合作交流【学习重点】掌握单项式乘以多项式的法则【学习难点】熟练地运用法则,准确地进行计算【学习过程】模块一 预习反馈一学习准备1.单项式乘以单项式法则:单项式与单项式相乘,把它们的_、_分别相乘,其余字母连同它的_不变,作为积的_。2.计算:(1) (2) 解:原式=_ 原式=_ =_ =_ =_ =_3.多项式的项数是_,次数是_.二.解读教材1.小颖作了一幅画,所用纸的大小如图所示,她在纸的左、右两边各留了的空白,这幅画的画面面积是多少?法一:先表示出画面的长和宽,由此得到画面的面积为;法二:先求出纸的面积,再减去两块空白处的面积,由此得到画面的面积为。由此引出_=_这个等式.式子的左边是一个单项式与一个多项式相乘,利用乘法分配律可得=_,再根据单项式乘单项式法则或同底数幂的乘法性质得到=_,即=_。2. 及等于什么?你是怎样计算的?=_.=_.归纳:单项式乘以多项式法则:单项式与多项式相乘,就是根据_用单项式去乘多项式的_,再把所得的积_。3.例题观摩(1) (2) =_ =_4.实践练习(1) (2) (3)=_ =_ =_=_ =_ =_模块二 合作探究1. 已知2.模块三 形成提升1.计算 (4)2.已知a+2b=0,求a3+2ab(a+b)+4b3的值 3.化简求值:-ab·(a2b5-ab3-b),其中ab2=-2。模块四 小结反思本节知识点:单项式乘以多项式法则:单项式与多项式相乘,就是根据_用单项式去乘多项式的_,再把所得的积_。我的困惑:_第四节 整式的乘法(3)【学习目标】理解多项式乘以多项式的法则.通过导图中的问题理解多项式与多项式相乘的结果.能够按多项式乘法步骤进行简单的多项式乘法的运算,达到熟练地进行多项式的乘法运算的目的.【学习方法】自主探究与合作交流【学习重难点】多项式乘以多项式法则的形成过程以及理解和应用.【学习重难点】多项式乘以多项式的法则的正确应用.【学习过程】模块一 预习反馈一学习准备1.单项式乘以单项式法则:单项式与单项式相乘,把它们的_、_分别相乘,其余字母连同它的_不变,作为积的_。2.单项式乘以多项式法则:单项式与多项式相乘,就是根据_用单项式去乘多项式的_,再把所得的积_。3.计算: =_ =_二解读教材X|k | B| 1 . c|O |m图1-1是一个长和宽分别为m,n的长方形纸片,如果它的长和宽分别增加a,b,所得长方形(图1-2)的面积可以怎样表示?法一:长方形的长为(m+a),宽为(n+b),所以面积可以表示为_;法二:长方形可以看做是由四个小长方形拼成的,四个小长方形的面积分别为mn,mb,an,ab,所以长方形的面积可以表示为_;方法三:长方形可以看做是由上下两个长方形组成的,上面的长方形面积为b(m+a),下面的长方形面积为n(m+a),这样长方形的面积就可以表示为_,根据上节课单项式乘多项式的法则,结果等于_.方法四:长方形可以看做是由左右两个长方形组成的,左边的长方形面积为m(b+n),右边的长方形面积为a(b+n),这样长方形的面积就可以表示为_,根据上节课单项式乘多项式的法则,结果等于_.由于求的是同一个长方形的面积,于是我们得到:=_=_=_归纳:多项式与多项式相乘:多项式与多项式相乘,先用一个多项式的_乘另一个多项式的_,再把所得的积_。3.例题观摩(1) 解:原式=4.实践练习原式=_ 原式=_ 原式=_=_ =_ =_=_ =_ =_模块二 合作探究1.若,且为整数,则的值可能取多少个?2.若的展开项中不含和的项,求和的值.模块三 形成提升1.计算2.计算:3.若 求m,n的值模块四 小结反思本节知识点:多项式与多项式相乘:多项式与多项式相乘,先用一个多项式的_乘另一个多项式的_,再把所得的积_。我的困惑:_第五节 平方差公式(1)【学习目标】1. 会推导平方差公式,说出平方差公式的结构特点,并能正确地运用公式进行简单的运算;2. 经历探索平方差公式的过程,认识“特殊”与“一般”的关系,了解“特殊到一般”的认识规律和数学发现的方法; 3. 在数学学习的过程中,体验领悟数学发现的成功感,感受数学发现学习的乐趣。 【学习方法】自主探究与合作交流【学习重难点】公式的理解与正确运用。【学习过程】模块一 预习反馈一学习准备1. 多项式与多项式相乘:多项式与多项式相乘,先用一个多项式的_乘另一个多项式的_,再把所得的积_。符号表示:(m+b)(n+a)= mn+ma+bn+ba二解读教材1.计算下列各题(1) (2) (3)原式=_ 原式=_ 原式=_=_ =_ =_=_ =_ =_观察以上算式及其运算结果,你有什么发现?再举一些类似的多项式相乘的情形,并计算验证自己的猜想.归纳:平方差公式:(a+b)(a-b)=_,即两数_与两数_的积,等于它们的平方差。公式的结构特点:左边是两个二项式的_,即两数_与这两数_的积;右边是两数的_.2.例题观摩:利用平方差公式计算:(1)(5+6x)(56x) (2)(m+n)(mn) 解:原式= 解:原式=3实践练习:利用平方差公式计算: (1)(a+2)(a2); (2)(3a+2b)(3a2b) (3)(x2y)(x+2y)模块二 合作探究探究一 利用平方差公式计算1. 2(a+b)(ab)(a2+b2) 3.模块三 形成提升1.计算(1). (2). (3). (4). (5). 2.已知,求m的值?3.已知,求x-y的值模块四 小结反思本节知识点:平方差公式:(a+b)(a-b)=_,即两数_与两数_的积,等于它们的平方差。我的反思:_第五节 平方差公式(2) 【学习目标】进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异【学习方法】自主探究与合作交流【学习重难点】公式的应用及推广【学习过程】模块一 预习反馈一学习准备1.平方差公式:(a+b)(a-b)=_。即两数_与两数_的积,等于它们的平方差。2.公式的结构特点:左边是两个二项式的_,即两数_与这两数_的积;右边是两数的_.3.应用平方差公式的注意事项:1)注意平方差公式的适用范围;2)字母a、b可以是数,也可以是整式;3)注意计算过程中的符号和括号二解读教材1.平方差公式的几何意义如图1-3,边长为a的大正方形中有一个边长为b的小正方形.(1)请表示图1-3中阴影部分的面积_.(2)小颖将阴影部分拼成了一个长方形(如图1-4),这个长方形的长是_、宽是_,它的面积是_.比较(1)(2)的结果,你能验证平方差公式吗?_2. 计算下列各组算式,并观察它们的共同特点 7×9= 11×13= 79×81= 8×8= 12×12= 80×80=(1)从以上过程中,你发现了什么规律?_(2)请用字母表示这一规律,你能说明它的正确性吗?_3. 例题观摩例1:用平方差公式进行计算:(1)102×98 ; (2)118×122实践练习:计算:(1)704×696 ; (2)9.9 ×10.1例2: 计算:(1) a2(a+b)(a-b)+a2b2 ; (2)(2x5)(2x+5)2x(2x3) 解:原式= 解:原式= = =_ = =_实践练习:计算:(1)(x+2y)(x-2y)+(x+1)(x1); (2)x(x1)解:原式=_ 原式=_ =_ =_ =_ =_模块二 合作探究1.求代数式的值其中。2. 计算(1) (2)模块三 形成提升1.运用平方差公式计算(1)69×71 (2)40×39 (3)(4)(y2)(y2)(y24) (5)2.计算模块四 小结反思本节易知识点:平方差公式的逆用:_=(a+b)(a-b)我的困惑:_