初三数学上册知识点总结4页word.doc
如有侵权,请联系网站删除,仅供学习与交流初三数学上册知识点总结【精品文档】第 4 页九年级数学上册知识点( 为重中之重)第一章 二次根式 二次根式:形如()的式子为二次根式; 1 性质:()是一个非负数;2 二次根式的乘除: ;。34 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。5 二次根式的混合运算第二章 一元二次方程1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。2 一元二次方程的解法 配方法:将方程的一边配成完全平方式,然后两边开方; 公式法:(其中当=0时,方程有两个不同的实数根:;当=0时方程有两个相等的实数根:;当=0时,方程无实数根 ) 因式分解法:左边是两个因式的乘积,右边为零。3 一元二次方程在实际问题中的应用4 韦达定理:设是方程的两个根,那么有第三章 旋转1 图形的旋转旋转:把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转。性质:对应点到旋转中心的距离相等; 对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等。 会画出一个图形顺时针或逆时针旋转30°、60°、90°后的图形。2 中心对称:把一个图形绕着某一点旋转180°, 如果它能够与另一个图形重合,那么就说这两个图形中心对称。 中心对称图形:把一个图形绕着某个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。 会画出一个图形关于原点对称得图形,也就是中心对称图形。3 关于原点对称的点的坐标 已知点P的坐标是(x,y):关于原点对称的点的坐标是(-x,-y)关于x轴对称的点的坐标是( x,-y )关于y轴对称的点的坐标是( -x,y )第四章 圆 1 圆、圆心、半径、直径、圆弧、弦、半圆的定义 2 垂直于弦的直径 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴; 垂直于弦的直径平分弦,并且平方弦所对的两条弧; 平分弦的直径垂直弦,并且平分弦所对的两条弧。 3 弧、弦、圆心角 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 4 圆周角 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; 半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。 5 点和圆的位置关系 点在圆外 点在圆上 d=r 点在圆内 d<r 定理:不在同一条直线上的三个点确定一个圆。 三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。 6直线和圆的位置关系 相交 d<r 相切 d=r 相离 d>r 切线的性质定理:圆的切线垂直于过切点的半径; 切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线; 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。 7 圆和圆的位置关系 外离 d>R+r 外切 d=R+r 相交 R-r<d<R+r 内切 d=R-r 内含 d<R-r 8 正多边形和圆 正多边形的中心:外接圆的圆心 正多边形的半径:外接圆的半径 正多边形的中心角:没边所对的圆心角 正多边形的边心距:中心到一边的距离 9 弧长和扇形面积 弧长 扇形面积:10 圆锥的侧面积和全面积 侧面积: 全面积11 (附加)相交弦定理、切割线定理第五章 概率初步 1 概率意义:在大量重复试验中,事件A发生的频率稳定在某个常数p附近,则常数p叫做事件A的概率。2 用列举法求概率 一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)= 3 用频率去估计概率