欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    海量数据分析处理 .pdf

    • 资源ID:33930820       资源大小:34.29KB        全文页数:3页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    海量数据分析处理 .pdf

    海量数据处理分析笔者在实际工作中,有幸接触到海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面:一、数据量过大,数据中什么情况都可能存在。如果说有10 条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB 级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU 和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。三、要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。 那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考:一、选用优秀的数据库工具。现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle 或者 DB2,微软公司最近发布的SQL Server 2005 性能也不错。另外在BI 领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL 工具和好的OLAP 工具都十分必要,例如Informatic ,Eassbase等。笔者在实际数据分析项目中,对每天6000 万条的日志数据进行处理,使用SQL Server 2000 需要花费6 小时,而使用SQL Server 2005则只需要花费3 小时。二、编写优良的程序代码。处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。 好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。三、对海量数据进行分区操作。对海量数据进行分区操作十分必要,例如针对按年份存取的数据, 我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server 的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O ,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。四、建立广泛的索引对海量的数据处理。对大表建立索引是必行的,建立索引要考虑到具体情况, 例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL 流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。五、建立缓存机制。当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如, 笔者在处理2 亿条数据聚合操作时,缓存设置为 100000 条/Buffer ,这对于这个级别的数据量是可行的。六、加大虚拟内存。 如果系统资源有限,内存提示不足, 则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18 亿条的数据进行处理, 内存为 1GB, 1 个 P4 2.4G 的 CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足, 那么采用了加大虚拟内存的方法来解决,在6 块磁盘分区上分别建立了6 个 4096M 的磁盘分区,用于虚拟内存,这样虚名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 3 页 - - - - - - - - - 拟的内存则增加为4096*6 + 1024 = 25600 M,解决了数据处理中的内存不足问题。七、分批处理。 海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破, 有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。八、使用临时表和中间表。数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了, 只能拆分为多个小表。 如果处理过程中需要多步汇总操作,可按汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。九、优化查询SQL 语句。在对海量数据进行查询处理过程中,查询的SQL 语句的性能对查询效率的影响是非常大的,编写高效优良的SQL 脚本和存储过程是数据库工作人员的职责,也是检验数据库工作人员水平的一个标准,在对SQL 语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。笔者在工作中试着对1亿行的数据使用游标,运行3 个小时没有出结果,这是一定要改用程序处理了。十、使用文本格式进行处理。对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序, 那么在程序操作数据库和程序操作文本之间选择,是一定要选择程序操作文本的, 原因为: 程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等。例如一般的海量的网络日志都是文本格式或者csv 格式(文本格式) ,对它进行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。十一、 定制强大的清洗规则和出错处理机制。海量数据中存在着不一致性,极有可能出现某处的瑕疵。 例如,同样的数据中的时间字段,有的可能为非标准的时间,出现的原因可能为应用程序的错误,系统的错误等, 这是在进行数据处理时,必须制定强大的数据清洗规则和出错处理机制。十二、 建立视图或者物化视图。视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘 I/O ,正如 10 根绳子吊着一根柱子和一根吊着一根柱子的区别。十三、避免使用32 位机子(极端情况) 。目前的计算机很多都是32 位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的机子,其中对位数的限制也十分重要。十四、 考虑操作系统问题。海量数据处理过程中,除了对数据库,处理程序等要求比较高以外, 对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制,临时空间的处理等问题都需要综合考虑。十五、使用数据仓库和多维数据库。存储数据量加大是一定要考虑OLAP 的,传统的报表可能 5、6 个小时出来结果,而基于Cube 的查询可能只需要几分钟,因此处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等。十六、 使用采样数据。 进行数据挖掘基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据, 一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率。一般采样时要注意数据的完整性和,防止过大的偏差。笔者曾经对1 亿 2 千万行的表数据进行采样,抽取出400 万行,经测试软件测试处理的误差为千分之五,客户可以接受。还有一些方法,需要在不同的情况和场合下运用,例名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 3 页 - - - - - - - - - 如使用代理键等操作,这样的好处是加快了聚合时间,因为对数值型的聚合比对字符型的聚合快得多。 类似的情况需要针对不同的需求进行处理。海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 3 页 - - - - - - - - -

    注意事项

    本文(海量数据分析处理 .pdf)为本站会员(Che****ry)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开