欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    南昌大学2013级高数(上)试题及答案-7页精选文档.doc

    • 资源ID:33959645       资源大小:537KB        全文页数:7页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    南昌大学2013级高数(上)试题及答案-7页精选文档.doc

    如有侵权,请联系网站删除,仅供学习与交流南昌大学2013级高数(上)试题及答案【精品文档】第 7 页南昌大学 201320014学年第一学期期末考试试卷一、 填空题(每空 3 分,共 15 分) 1. 函数 的定义域是 。2. 设函数 则 。3. 函数的单调增加区间是 。4. _。5. 。二、 单项选择题 (每小题3分,共15分) 1. 当时,曲线 ( )。(A)有且仅有铅直渐近线. (B)有且仅有水平渐近线.(C)既有水平渐近线,又有铅直渐近线. (D)既无水平渐近线,又无铅直渐近线.2. 当时,是 的( )。(A) 高阶无穷小. (B) 低阶无穷小.(C) 等价无穷小. (D) 同阶但非等价无穷小.3. 曲线在点处的切线方程为( ) (A) . (B) . (C) . (D) . 4. 曲线的上凸区间是( )。(A) . (B) . (C) . (D) 没有凸区间.5. ( )。(A) . (B) . (C) . (D) .三、计算题(一)(每小题 8分,共24分)1. 。2. 。3. 设函数是由方程所确定的隐函数,求。四、计算题(二)(每小题 8分,共 16分)1. 设 求 。2. 求不定积分。五、求下列各题(每小题 8分,共 16分)1. 计算定积分。2. 试问为何值时,函数在处取得极值?它是极大值还是极小值?并求此极值。六、解答题与证明题(第1小题 8分,第2小题 6分,共 14分)1.确定常数和,使函数 处处可导。2. 设在区间上可微,且满足条件:试证: 存在,使得。 南昌大学 20132014学年第一学期期末考试试卷及答案一、 填空题(每空 3 分,共 15 分) 1. 函数 的定义域是2. 设函数 则3. 函数的单调增加区间是4. 5. 二、 单项选择题 (每小题3分,共15分)1. 当时,曲线 ( B )。(A)有且仅有铅直渐近线. (B)有且仅有水平渐近线.(C)既有水平渐近线,又有铅直渐近线. (D)既无水平渐近线,又无铅直渐近线.2. 当时,是 的( A )。(A) 高阶无穷小. (B) 低阶无穷小.(C) 等价无穷小. (D) 同阶但非等价无穷小.3. 曲线在点处的切线方程为( C ) (A) . (B) . (C) . (D) . 4. 曲线的上凸区间是( A )。(A) . (B) . (C) . (D) 没有凸区间.5. ( D )。(A) . (B) . (C) . (D) .三、计算题(一)(每小题 8分,共24分)1. 。解: 原式 2. 。解: 原式 3. 设函数是由方程所确定的隐函数,求。解: 方程两边对求导,有由原方程知 时,代入上式,得 四、计算题(二)(每小题 8分,共 16分)1. 设 求 。解: .2. 求不定积分。解: 原式五、求下列各题(每小题 8分,共 16分)1. 计算定积分。解: 令,则 ,于是原式2. 试问为何值时,函数在处取得极值?它是极大值还是极小值?并求此极值。解: ,得 又 时,取极大值,六、解答题与证明题(第1小题 8分,第2小题 6分,共 14分)1.确定常数和,使函数 处处可导。解: 当时,显然可导。当时,因在处连续,由,得 由,得 故当,时,处处可导。2. 设在区间上可微,且满足条件:试证: 存在,使得。 证明:设,由积分中值定理知,使由已知条件,有又由于,且在上连续,在上可导,故由罗尔定理知:,使,即

    注意事项

    本文(南昌大学2013级高数(上)试题及答案-7页精选文档.doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开