人教版八年级下册数学 18.2.1 第1课时 矩形的性质 教案.doc
-
资源ID:34106212
资源大小:130.50KB
全文页数:3页
- 资源格式: DOC
下载积分:2金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版八年级下册数学 18.2.1 第1课时 矩形的性质 教案.doc
182特殊的平行四边形182.1矩形第1课时矩形的性质1理解并掌握矩形的性质定理及推论;(重点)2会用矩形的性质定理及推论进行推导证明;(重点)3会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明与计算(难点)一、情境导入如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状我们若改变平行四边形的内角,使其一个内角恰好为直角,就得到一种特殊的平行四边形,也就是我们早已熟悉的长方形,即矩形,如图所示二、合作探究探究点一:矩形的性质【类型一】 运用矩形的性质求线段或角 在矩形ABCD中,O是BC的中点,AOD90°,矩形ABCD的周长为24cm,则AB长为()A1cmB2cmC2.5cmD4cm解析:在矩形ABCD中,O是BC的中点,AOD90°.根据矩形的性质得到ABOOCD,则OAOD,DAO45°,所以BOABAO45°,即BC2AB.由矩形ABCD的周长为24cm,得2AB4AB24cm,解得AB4cm.故选D.方法总结:解题时矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质【类型二】 运用矩形的性质解决有关面积问题 如图,矩形ABCD的对角线的交点为O,EF过点O且分别交AB,CD于点E,F,则图中阴影部分的面积是矩形ABCD的面积的()A. B. C. D.解析:在矩形ABCD中,ABCD,OBOD,ABOCDO.在BOE和DOF中,BOEDOF(ASA),SBOESDOF,S阴影SAOBS矩形ABCD.故选B.方法总结:运用矩形的性质,通过证明全等三角形进行转化,将求不规则图形的面积转化为求简单图形面积是解题的关键【类型三】 运用矩形的性质证明线段相等 如图,在矩形ABCD中,以顶点B为圆心、边BC长为半径作弧,交AD边于点E,连接BE,过C点作CFBE于F.求证:BFAE.解析:利用矩形的性质得出ADBC,A90°,再利用全等三角形的判定得出BFCEAB,进而得出答案证明:在矩形ABCD中,ADBC,A90°,AEBFBC.CFBE,BFCA90°.由作图可知,BCBE.在BFC和EAB中,BFCEAB(AAS),BFAE.方法总结:涉及与矩形性质有关的线段的证明,可运用题设条件结合三角形全等进行证明,一般是将两条线段转化到一对全等三角形中进行证明【类型四】 运用矩形的性质证明角相等 如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EFED,EFED.求证:AE平分BAD.解析:要证AE平分BAD,可转化为ABE为等腰直角三角形,得ABBE.又ABCD,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定和矩形的性质,即可求证证明:四边形ABCD是矩形,BCBAD90°,ABCD,BEFBFE90°.EFED,BEFCED90°.BFECED,BEFEDC.在EBF与DCE中,EBFDCE(ASA)BECD.BEAB,BAEBEA45°,EAD45°,BAEEAD,AE平分BAD.方法总结:矩形的问题可以转化到直角三角形或等腰三角形中去解决探究点二:直角三角形斜边上的中线的性质 如图,在ABC中,AD是高,E、F分别是AB、AC的中点(1)若AB10,AC8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.解析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可得DEAEAB,DFAFAC,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上”证明即可(1)解:AD是ABC的高,E、F分别是AB、AC的中点,DEAEAB×105,DFAFAC×84,四边形AEDF的周长AEDEDFAF554418;(2)证明:DEAE,DFAF,E、F在线段AD的垂直平分线上,EF垂直平分AD.方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解三、板书设计1矩形的性质矩形的四个角都是直角;矩形的对角线相等2直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半通过多媒体演示知识的探究过程,让学生在体验、实践的过程中有更直观地认识,扩大认知结构,发展能力,更好地理解平行四边形与矩形之间的从属关系和内在联系,使课堂教学真正落实到学生的发展上