西师版数学五年级下全册教案.doc
如有侵权,请联系网站删除,仅供学习与交流西师版数学五年级下全册教案【精品文档】第 87 页西师版数学五年级下册教案第一单元 分数分数的意义(一)【教学内容】 教科书第12页的例1以及相关的练习。【教学目标】1理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。2培养学生的分析能力和归纳概括能力。【教学过程】一、复习引入师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗?二、教学新课1教学例1,理解单位“1”师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。黑板画图演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。师:同学们,你们能用小圆代替月饼,帮小华分一分吗?等学生分好后,抽一个学生分的小圆展示。师:这时,小华的爸爸又提出了问题。演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?引导学生理解两个1/4代表的数量不一样。师:为什么会出现这种现象呢?引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。师:前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。出示第2页的熊猫图。师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?请分一分,并填空。引导学生观察单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。师:通过上面的研究,同学们有什么发现?引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。板书单位“1”的含义。师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体?教师再举两个例子,深化学生对单位“1”的理解。2理解并归纳分数的意义师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5师:想想自己操作的过程,你能说一说什么是分数吗?学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。归纳并板书分数的意义,板书课题。试一试:涂色部分占整个图形的几分之几?师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢? 3说生活中的分数师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?学生说生活中的分数。三、课堂小结(略)四、课堂作业1第4页课堂活动第2题。2练习一第1,2,3,4题。分数的意义(二)【教学内容】 教科书第45页的例2、例3以及相关的练习。【教学目标】1使学生理解并掌握分数与除法的关系,会用分数表示除法的商。2培养学生的比较能力、分析能力和归纳概括能力。3理解所学知识与现实生活的联系,使学生获得价值体验,从中激发学生的学习兴趣,使学生主动参与到学习的过程中来。【教学过程】一、复习准备11/3是把单位“1”平均分成()份,表示这样的()份。3/4又表示什么呢?2什么是分数?3用200cm2的纸板做8个学具,平均每个学具要用多少平方厘米纸板?二、导入新课师:最后一个小题同学们是用什么方法做的?生:除法。师:为什么用除法呀?生:因为要把200cm2的纸板平均分成8份。师:把一个数平均分成几份要用除法计算,把一个整体平均分成几份可以用分数表示。除法和分数有没有联系,有什么联系呢?这节课我们就来研究分数与除法的关系。(板书课题)三、进行新课1教学例2出示例2。师:把4m的长度平均分成5份,每份的长度是多少?我们可以从两个角度来研究:一方面想一想用算式怎样计算;另一方面想一想用分数表示每份的长度。(板书:用算式计算用分数表示)师:同学们可以从中选一个问题来研究,一会儿老师听听你们的意见。学生讨论。师:想好了吗?哪些同学研究了第一个问题:用算式怎样计算每份的长度?生:4÷5。师:为什么?生:因为这是把4m平均分成5份,求其中的一份是多少,用除法计算。师:哪些同学研究了第二个问题:怎样用分数表示每份的长度?引导学生说出把1m平均分成5份,每份就是15m。4m中有4个1m,就有4个15m,就是45m。师:把4m平均分成5份,每份的长度用算式表示是4÷5,用分数表示是45,从中你发现了什么?让学生发现除法与分数是有联系的,4÷5的结果就是4/5。师:是不是所有的除法和分数都有联系呢?它们是怎样联系的呢?同学们做一做下面的题目就更清楚了。学生完成第4页例2下面的“议一议”,要求学生先填表,再说自己的发现。师:从中你知道了什么?指导学生说出:1÷3=1/3;3÷4=3/4。师:比较这几个式子,它们的算式和商有联系吗?从中你又发现了什么?学生讨论后回答:我发现被除数相当于分数的分子,除数相当于分母。师:你能利用除法与分数的联系,用分数表示除法算式的结果吗?生:能!引导学生完成第5页的试一试。在学生完成3÷9=3/9;1÷6=1/6;4÷7=4/7的基础上,让学生完成a÷7=()();a÷b=()(),逐步归纳出用字母表示的分数与除法的关系。师:a÷b=ab表示什么意思呢?生:表示被除数相当于分数的分子,除数相当于分母。师:同学们看看教材,书上专门说了一句“b0”,你知道为什么要作这样的规定吗?指导学生说出因为除数、分数的分母都不能为0,所以在这个等式中也要强调除数、分数的分母不能为0。师:这样一来,同学们就能全面理解分数与除法的关系了。2教学例3师:我们知道了分数与除法的关系以后,就可以用它们的关系来解决生活中的一些问题了。下面我们先来研究小华家养的鸡、鸭、兔的问题。出示第5页例3。师:从图中我们知道了些什么?引导学生说出图中有2只兔、3只鸭和4只鸡。师:要求兔的只数是鸭的几分之几,应该怎样列算式?生:2÷3。师:由分数与除法的关系,你能算出2÷3是几分之几吗?生:2÷3=2/3。师:为什么?生:因为被除数相当于分数的分子,除数相当于分母,用这个关系可以知道2÷3=23。师:请同学们用同样的方法自己解决鸡是鸭的几分之几和图中其他的数学问题。学生讨论解答。(略)3总结分数与除法的联系和区别师:我们已经知道了分数与除法的联系,但是它们有没有区别呢?请小组讨论后填写下表。出示表格:学生讨论填写表格后,将一个小组的结果展示出来:联 系区 别除法分子相当于被除数,分母相当于除数。是一种运算。分数是一个数,也可以表示两个数相除。师:这样一来,我们对分数与除法的关系理解得就更加深刻了。四、课堂小结(略)五、课堂作业练习一第5,6,7,8,9题。分数的大小比较【教学内容】 教科书第9页例1、例2及相关练习。【教学目标】1理解并掌握比较分母相同或分子相同的两个分数的大小的方法。2在学习、比较分数大小的过程中加深对分数意义的理解。3培养观察、比较、分析、概括的能力和自学探究,构建新知的能力。【教学过程】一、复习准备1用分数表示图中的阴影部分。2填空。(1)把一块蛋糕平均分成四份,每份是它的()。(2)3/4的分数单位是(),3/4里面有()个1()。(3)4/5里面有()个15,3/5里面有()个15。(4)7/10里面有7个1(),7/9里面有7个1()。 揭示课题:分数的大小比较。二、走进新课,探究新知1教学例1 比较同分母分数的大小。(1)教师出示两张完全相同的正方形纸片,请问如何判断两张纸的大小?(把两张纸重叠放在一起,完全重合,说明相等。)师将两张纸翻一面贴在黑板上,请说出阴影部分各占多少。板书:1/4和3/4。(2)你会比较1/4和3/4的大小吗?请利用老师发给你的材料:分一分,比一比,说明1/4和3/4的大小。讨论交流:生1:我通过画图直接比出来3/41/4。生2:1/4里面有1个1/4,3/4里面有3个1/4,3个1/4比1个1/4大,所以1/43/4。师:第二个同学能用前面学的分数单位来思考,比较出了14和34的大小,很好!(3)试一试:比较下面每组中两个分数的大小。 4/53/5 5/61/6(4)引导发现规律:师:这三组分数有什么共同点?怎样比较分母相同的两个分数的大小呢?(思考、交流)师:同学们的发现跟数学家的发现是一样的。看看数学家是怎样概括的。板书:分母相同的两个分数,分子大的分数比较大。齐读一遍。师:你认为应用这个规律比较两个分数的大小,前提条件是什么?(分母相同)(5)练习:请写出能应用这个规律比较的两个分数,并比较大小,同桌相互检查。2教学例2比较分子相同的两个分数的大小。(1)师:请同学们给老师一个机会。老师也写出两个分数:3/5和3/4,能用刚才的规律进行比较吗?为什么?师:分母不相同,也就是平均分的份数不相同,把一个单位“1”平均分成不同的份数,每份会发生什么变化呢?(2)请拿出老师发的材料,分一分,比一比,想一想。(3)展示汇报交流。生1:通过画图,比较出了3/53/4。生2:发现两张同样大小的纸,平均分的份数越多,每一份反而越小。生3:分两张同样大小的纸,也就是单位“1”相同。1/51/4,所以3个1/5小于31/4,也就是3/53/4。(4)试一试:比较下面每组中两个分数的大小。6/76/11 3/43/8(5)发现规律:师:这三组分数有什么共同点?怎样比较,分子相同的两个分数的大小呢?学生回答后教师板书:分子相同的两个分数,分母小的分数比较大。(6)练习:请写出能应用这个规律比较大小的两个分数并比较,同桌互相检查。说说同分母的分数如何比较大小?同分子的分数如何比较大小?它们在比较的方法上有什么不同?三、巩固练习1比较下面各组分数的大小。2/74/7 2/52/3 3/87/8 1/21/9 3/107/10 2/259/2511/2511/26 5/135/112判断并说明理由。6/175/17()2/112/9 7/97/8()9/1009/10四、课堂总结学习本课你有什么收获?有什么问题要问吗?五、作业完成练习二有关习题。真分数和假分数【教学内容】 教科书第12页的例1以及相关的练习。【教学目标】1认识真分数和假分数,知道比“1”小的分数都是真分数,比“1”大或等于“1”的分数都是假分数,会辨别真分数和假分数。2通过学生的主动探究,提高学生的操作能力和分析能力,发展学生的初步逻辑思维能力。3通过操作、观察和填表等学习方式激发学生学习数学的兴趣,通过学生的主动探索培养学生的成功体验。【教学过程】一、复习引入出示练习:1什么叫分数?2在下面的图中涂上颜色来表示相应的分数。3/4 5/83在直线上用点来表示下面的分数。1/5 5/5 8/5 3/5 6/5学生独立在练习卡上完成后,抽学生把答案进行全班交流。二、探究新知师:同学们都能用前面所学的知识来完成涂色和填数这些练习了,下面请你们翻到数学书第12页例1,按题目的要求,以1个圆为单位“1”,在下面的图中涂上颜色来表示相应的分数。学生独立完成后,抽几个学生把自己涂的结果展示出来。师:从中你发现了什么?引导学生说出自己的发现,发现有的分数的涂色部分不足一个圆,有的分数的涂色部分刚好一个圆,有的分数的涂色部分是一个多圆。师:刚才同学们是以几个圆为单位“1”进行涂色的?生:以1个圆为单位“1”。师:以1个圆为单位“1”,涂色部分“不足一个圆”,“刚好一个圆”,“一个多圆”说明了什么?引导学生说出:以1个圆为单位“1”时,涂色部分不足一个圆的分数小于单位“1”,涂色部分刚好一个圆的分数和单位“1”相等,而涂色部分是一个多圆的分数比单位“1”大。师:请把你的发现填写在数学书上的表中。学生独立完成后,抽几个学生把答案展示,进行全班交流。师:请同学们观察,比1小的分数有什么特点?引导学生发现比1小的分数的分子小于分母。师:对,这种分子比分母小的分数就叫做真分数。(板书:分子比分母小的分数叫做真分数)师:你还能说出几个真分数吗?引导学生说出几个真分数。师:再请同学们观察,和1相等的分数以及比1大的分数分别有什么特点?引导学生发现和1相等的分数分子和分母相等,而比1大的分数分子都比分母大。师:同样,我们也给这种分子比分母大或者分子和分母相等的分数取个名字,叫做假分数。(板书:分子比分母大或者分子和分母相等的分数叫做假分数)师:像这样分子比分母大或者分子和分母相等的分数你还能举出几个吗?引导学生说出几个假分数。师:真分数和假分数就是我们这节课要认识的新朋友。(板书课题:真分数和假分数)三、强化新知识第13页中“试一试”第3题。 1/2 1/4 5/4 3/4 4/4 3/2 7/4 8/4先让学生独立在数轴上用点来表示上面的分数,然后集体订正。师:观察这些分数,在数轴01这段距离上的分数是什么分数?在数轴1这个点上和数轴12这段距离上的分数又叫什么分数?生:数轴01这段距离上的分数是真分数,在数轴1这个点上的分数和数轴12这段距离上的分数都是假分数。师:从中你知道了什么?生:我进一步知道了:比“1”小的分数叫做真分数,和“1”相等或者大于“1”的分数叫假分数。四、巩固练习师:你们能不能正确、灵活地运用真分数和假分数呢?我们来试一试。1“试一试”第1题。抽个别学生回答,说出判断的依据。2“试一试”第2题。学生独立完成后进行集体订正。引导学生总结出当分子等于分母或者是分母的倍数时,假分数可以化成整数。3课堂活动。4完成练习三的练习。五、总结 这节课你学到了什么?什么是真分数和假分数?这节课你还有哪些收获?分数的基本性质(一)【教学内容】 教科书第15页例1及相关练习。【教学目的】1理解并掌握分数的基本性质,能用分数的基本性质解决一些简单的问题。2正确认识和理解变与不变的辩证关系。3培养学生的观察能力、抽象思维能力,通过学生的成功体验,培养学生热爱数学的情感。【教学过程】一、创设情境,引发思考引导学生观察教材主题图。师:在数学兴趣活动后,同学们都办了数学小报,其中设计有“数学趣题”。请看主题图,你发现了哪些数学信息?师:如果4张小报的大小是一样的,他们4人数学趣题占的版面也是一样大吗?师:大家的猜测对不对呢?许多科学家的发现也是和大家一样从猜想开始的,但只有经过验证的猜想才能得出科学的结论。现在就让我们一起来研究研究,学习当数学家吧!二、动手操作、导入新课1分纸折纸,初步感受师:我们来做一个实验吧。师:请小组长拿出4张同样大小的长方形纸分给组内的4个同学,用对折的方法分别把4张纸平均分成份、份、份和份。并用涂色的方法分别表示出1/2,2/4,3/6,4/8。(板书这4个分数)学生活动,一人折一张纸。师:请大家把4张纸条的左端对齐平放在桌上,观察比较:涂色部分面积的大小怎样?(小组合作,分工完成。)师:实验做完了,结果怎样?生1:我看到张纸条涂色部分面积的大小完全相同,并且没涂色的部分面积的大小也相同。师:观察得很仔细!这说明了什么?生2:说明了个分数一样大。师:真棒!一样大,我们可以用什么符号来表示?生:等号。(师板书如下:1/2=2/4=3/6=4/8)师:是这个意思吗?生:是。师:刚才的实验证明我们猜测正确吗?生:正确。2观察对比,概括分析师:观察一下这个等式,4个分数有什么不同?有什么相同?生:分子分母都不同,但分数的大小相同。师:分数的大小为什么相同呢?要弄清楚这个问题,我们必须先研究分数的分子、分母是怎样变化的。师:请同学们从左到右观察这些等式,想一下,这4个分数的分子、分母怎样变化才保证了分数的大小不变?小组讨论后汇报。生1:从1/2到2/4是分子乘2,分母也乘2;从1/2到3/6是分子乘3,分母也乘3。生2:从2/4到4/8也是分子和分母同时乘2。随学生的回答,演示:1/2=1×2/2×2=2/4;2/4=2×2/4×2=4/8。师:谁能用一句话把这个变化规律表达出来?随着学生的回答,出示:分数的分子和分母同时乘相同的数,分数的大小不变。师:再请同学们从右到左观察这些等式,想一下,这4个分数的分子、分母又发生了怎样的变化,从而保证了分数的大小不变呢?同桌讨论后汇报。生1:4/8到1/2是分子和分母同时除以4;3/6到1/2是分子和分母同时除以3。根据学生的回答演示:4/8=4÷4/8÷4=1/2;3/6=3÷3/6÷3=1/2。师:这个变化规律又可以用哪句话表达出来?随着学生的回答出示:分数的分子和分母同时除以相同的数,分数的大小不变。3概括分数的基本性质师:哪些同学能把刚才我们观察到的这些规律用一句话概括出来?如有困难,可以看看书中第16页上是怎么说的。生:分数的分子与分母同时乘或者除以一个相同的数(0除外),分数的大小不变。(教师根据学生的回答板书这句话)师:说得非常棒!这就是今天我们所学的“分数的基本性质”。(板书课题:分数的基本性质)让学生齐读一遍。师:你认为在这句话中哪几个字特别重要,是我们必须注意的?生:相同的数。师:相同的数,指一些什么数?生:指同时乘或除以的数必须是相同的一个数。师:性质中为什么要说“0除外”?生1:分子、分母同时乘0,分母就变成0了,而分数中分母是不能为0的。生2:同时除以0更不可能,因为0不能作除数。若学生不能完整地说出来,则由老师引导补充。说说为什么刚才数学趣题占的版面的大小是一样的。师:现在你能用学过的知识说一说你的看法。 简评:此过程主要由学生的观察、比较,得出这4个分数大小相等的规律,从而引出分数的基本性质。整个环节体现了学生的探究过程和教师的引导作用,又体现了学生的主体作用与教师的主导作用的有机结合。三、巩固练习1判断(正确的画,错误的画×)。(1)1/51+3/5+34/8()(2)12/8=12÷6/18÷6=2/3()(3)分数的分子、分母同时乘或除以一个相同的数,分数的大小不变。()2找朋友:说出一个与老师手中卡片上分数一样大的分数。3写一写:自己设计一个分数,并写出与它相等的分数,比一比,在1分钟里谁写的多。4独立完成练习四第题,集体订正。四、课堂小结 回忆一下,这节课我们学到了什么知识?什么是分数的基本性质?你是怎样理解的?分数的基本性质(二)【教学内容】 教科书第16页例2及相关练习。【教学目标】1能对分数的性质进行简单应用。2感受分数的基本性质和商不变规律之间的区别和联系。3培养学生的逻辑思维能力,增强学生学好数学的信心。【教学过程】一、复习引入师:请同学们在下面的分数中分别找出和2/4,4/6相等的分数。(出示:4/2,4/8,2/3,10/12)生:和2/4相等的分数是4/8;和4/6相等的分数是2/3。师:能说说你的理由吗?生:我是根据分数的基本性质来选的。师:你还记得分数的基本性质是怎样的吗?引导学生回忆:分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变。师:这节课我们要继续研究分数的基本性质。(板书:分数的基本性质) 二、教学新课1把3/4化成分母是8而大小不变的分数师:首先让我们来研究这样一个问题。(出示教科书第30页例2)师:你认为在这一题的要求中,哪几个字最重要?给大家提个醒吧。引导学生说出:我认为“大小不变”这几个字很重要,我要提醒同学们在化分数的时候不能改变分数的大小。师:怎样才能在不改变分数大小的情况下,完成题目的要求呢?请同学们先独立思考,再在小组里讨论交流。学生小组讨论,教师辅导有困难的小组。师:你是怎样把3/4化成和它相等的分母是8的分数的?生1:我把分母和分子都同时乘2,化成了6/8。师:为什么要分母和分子都乘2呢?生:因为要想把3/4的分母化成8就必须把分母乘2。师:为什么分子也要乘2呢?生:因为题目要求不改变分数的大小,要达到这个要求就必须分母和分子同时乘2。师:你这样做的根据是什么?生:分数的基本性质。师:和他结果一样的请举手。(板书:用分数的性质来化:3/4=3×2/4×2=6/8)师:都是使用分数的基本性质来化的吗?有和他的解法不一样的吗?(说明:如果学生都是同一种解法,教师则引导学生思考怎样用第二种方法来解;如果有学生用了商不变的规律,则鼓励学生大胆地说出自己的想法。以下按第二种情况设计。)生2:我还有一种做法。3/4=3÷4,把被除数3和除数4同时乘2就变成了6÷8,6÷8=6/8。师:为什么要把被除数3和除数4同时乘2呢?生:因为除数和被除法同时扩大相同的倍数,商不变。师:这里运用了我们前面学习的商不变的规律。(板书:用商不变的规律来化:3/4=3÷4=(3×2)÷(4×2)=6/8)师:同学们能用两种方法把34化成分母是8而大小不变的分数,真不错。2把15/24化成分母是8而大小不变的分数师(指板书):同学们也能用同样的方法把1524化成分母是8而大小不变的分数吗?生:能。师:你们都用了哪些方法?谁愿意把你的化法像老师这样,把它写在黑板上呢?抽学生板书,让学生边板书边说自己的想法。引导学生完成板书:分数的性质用分数的基本性质来化:3/4=3×2/4×2=6/8 15/24=15÷3/24÷3=5/8用商不变的规律来化:3/4=3÷4=(3×2)÷(4×2)=6/815/24=15÷24=(15÷3)÷(24÷3)=6/83比较,汇报发现师:同学们用两种方法分别把34,1524化成了分母都是8而大小不变的分数。请同学们比较一下这些化法,你发现了什么?先独立思考,再在小组内交流。学生讨论后汇报。引导学生发现两点:(1)把一个分数化成另一个大小不变的分数时,可以用分数的基本性质来化,也可以用商不变的规律来化。(2)对于两个分母不一样的分数,可以通过一些方法把它们化成分母相同的分数。师:你们的第二个发现很有价值,在后面学习约分、通分时还要用到。当然,我们的第一个发现也很重要。刚才同学们有的用分数的基本性质来化分数,有的用商不变的规律来化分数,这说明分数的基本性质与商不变的规律是有联系的。你能说说分数的基本性质和商不变的规律为什么会有联系吗?引导学生说出:因为分数的分子相当于除法里的被除数,分母相当于除数,所以分数与除法有联系,这样分数的基本性质就与商不变的规律有联系了。所以我们在把一个分数化成另一个与它等值的分数时既可以用分数的基本性质来化,也可以用商不变的规律来化。4完成第16页“试一试”把1/3,22/36化成分母是18而大小不变的分数。三、练习巩固 练习四第27题。四、总结 本节课我们学了些什么呢?从中你明白了些什么?五、拓展练习第18页思考题。约分(一)【教学内容】 教科书第19页例1。【教学目标】1认识公因数和最大公因数,能找出两个非零自然数的公因数和最大公因数。2知道什么是互质数,能判断两个数是不是互质数。3通过学生的主动学习和合作交流,进一步增强学生的成功体验。【教学过程】一、复习引入师:同学们在前面的学习中已经掌握了有关因数的知识,并且能够用不同的方法找出一个非零自然数的所有因数,现在请你们用自己喜欢的方法找出下面几个数的因数。板书7,25,81三个数,学生独立完成。师:请已经完成的同学举手示意。谁愿意来汇报一下结果?生1:7是一个质数,它的因数只有1和它本身两个数。生2:25的因数是1,5,25。生3:81的因数是1,3,9,27和81。二、探索新知师:看来同学们对有关因数的知识掌握得很好,那么还想不想继续再找几个数的因数呢?生:想。出示19页的例1,请同学们分别写出12和30的因数。完成后抽学生汇报。生:12的因数有1,2,3,4,6,12;30的因数有1,2,3,5,6,10,15,30。师:和这个同学的答案一样的请举手。很好,接下来请你们认真观察一下12和30的因数,看看会有什么发现。小组的同学可以互相讨论交流。学生观察交流,教师巡视。引导学生说出自己的发现,强调两个发现:(1)12和30的因数有的相同有的不同;(2)这两个数都有相同的因数1,2,3,6。师:把你们的发现填在这两个圈里。师:这两个发现很重要。12和30有不同的因数,但是也有相同的因数,你们能给这些相同的因数1,2,3,6取个名字吗?引导学生说出“相同因数”、“共有因数”等。师:其实,“相同因数”、“共有因数”都表达了一个意思,就是这些因数是这两个数公有的因数,所以我们可以把这些因数叫做这两个数的公因数。(板书:几个数公有的因数,叫做这几个数的公因数。)师:12和30的公因数有哪些?生:12和30的公因数有1,2,3,6。师:其中最大的一个公因数是多少呢?生:是6。师:最大的一个公因数,我们把它叫做最大公因数。(接着板书:其中最大的一个,叫做最大公因数。)师:你能用找因数的方法找出18和24的公因数和最大公因数吗?生:能!学生找18和24的公因数和最大公因数后集体订正。师:同学们已经会用找因数的方法找两个数的公因数和最大公因数了,但是大家觉得这样找麻烦不麻烦呢?生:这样找太麻烦了。师:所以,我们应该找一个又快又对的方法,这就是用短除法来求两个数的最大公因数。怎样用短除法来求两个数的最大公因数呢?在前面的学习中我们会用短除法来找一个数的因数,现在请你们用短除法分别找出12和30的因数。师:能试着把你们刚才写的两个短除法算式合并成一个短除法算式吗?小组的同学可以合作一下。学生完成后汇报。教师用动态演示把两个短除法算式合并为一个短除法的过程:师:作除数的2和3是12和30的公因数吗?为什么?引导学生说出:2和3是12和30的公因数,因为2既能整除12,也能整除30,是12和30公有的因数。3也是这样。师:除到商是2和5以后,除1外还能找到这两个数的公因数吗?生:找不到了。师:像这样只有公因数1的两个数叫做互质数。除到商是互质数时,还能除下去吗?生:不能了。师:这时我们来思考一下12和30的最大公因数,这个最大公因数应该含有哪些因数呢?学生讨论后回答:这个最大公因数应该含有两个数的公因数,应该是2×3=6。师:这个想法对吗?同学们可以直接用“6”这个数作为除数去除12和30,看除出的结果是不是互质数。学生除后证实其结果是互质数。师:这样说明了什么?生:说明6是12和30的最大公因数。师:你能总结出怎样用短除法求两个数的最大公因数吗?学生讨论后回答:应该先用短除法来除,除到商是互质数为止,然后把除数相乘,乘积就是这两个数的最大公因数。三、巩固练习师:今天同学们通过合作交流认识了公因数、最大公因数和互质数,还能求两个数的最大公因数,你们真能干。接下来咱们用所学的知识来练习练习。你们有信心吗?指导学生完成练习五第1,2,3题。四、课堂小结 通过今天的学习你知道了些什么?都有哪些收获?讲给同学们听听。约分(二)【教学内容】 教科书第20页例2及相关的练习。【教学目标】1知道最简分数的含义,理解什么是约分,掌握约分的方法并能用这个方法正确地约分。2培养学生灵活运用知识的能力。3通过学生的主动探索,让学生从中获得成功体验,坚定学生学好数学的信心。【教学过程】一、复习准备1口答:什么是公因数?什么是最大公因数?2写出28和42的公因数,并指出它们的最大公因数。3什么是互质数?在3和8、12和18这两组数中,哪组数是互质数?4说说分数的基本性质。你能用分数的基本性质把48化成分母是2而大小不变的分数吗?师:这节课就用我们学过的这些知识来探讨一个新的问题约分。(板书课题) 二、进行新课出示例2。师:彩色卡片占全部卡片的几分之几?生:占全部卡片的3050。师:你是怎样想的?引导学生说出把全部卡片平均分成50份,彩色卡片占其中的30份。师:现在这个分数的分子、分母都比较大,你能把这个分数化成分子、分母都比较小,但分数大小不变的分数吗?学生讨论后回答:可以用分数的基本性质,把分子和分母同时缩小相同的倍数。师:为什么要同时缩小相同的倍数呢?使学生理解:“缩小”是为了使分子、分母变小,“同时缩小相同的倍数”是保证分数的大小不变。师:请同学们应用分数的基本性质,看能把3050化成哪些分子、分母都比较小,但分数大小不变的分数。学生先独立思考,再合作交流。学生化出的分数可能有:30/50=30÷2/50÷2=15/25 30/50=30÷5/50÷5=6/1030/50=30÷10/50÷10=3/5师:这些结果都符合老师的要求吗?你还有哪些发现?指导学生说出这些结果都符合老师的要求,因为这些分数是分子、分母都比30/50的分子、分母小,但分数大小不变的分数。学生还可以从中发现15/25=6/10=3/5。师:像这样把一个分数化成同它相等,且分子分母都比较小的分数的过程,叫做约分。师:书上的小朋友是把3050化简成哪个分数呢?生:化简成35。师:比较刚才的化简过程和这两个小朋友的化简过程,有哪些地方相同,有哪些地方不同?演示:30/50=30÷10/50÷10=3/5 3153050255=3/5 330505=3/5学生讨论后回答:相同的地方是:都展示了把3050化简成35的过程;不同的地方是:书写方式不一样。师:能解释一下后两种约分的过程吗?使学生明白,中间的一种约分方式是用分子、分母的公因数一次一次地去化简;而后一种约分方式是用分子、分母的最大公因数一次就把分数化简为3/5。师:这两种化简方法都可以,但是在平时的约分过程中,我们一般都采用后两种方式。下面请同学们再观察一下,15/25,6/10和3/5的分子、分母都比30/50小但大小都与30/50相等,因此把30/50化简成这三个分数的过程都是约分的过程。但是比较这三个分数(即15/25,6/10和3/5),你能发现35与前两个分数有哪些地方不一样吗?使学生理解前两个分数的分子、分母除了公因数1还有其他的公因数,还可以进一步约分;而最后一个分数的分子分母是互质数,不能再约分了。师:像这样分子、分母是互质数的分数叫做最简分数。我们在约分时,如果没有特殊要求,一般都要把原分数化成最简分数。同学们会判断哪些是最简分数吗?生:会。师:那么我们来试一试。引导学生做第21页的课堂活动。师:通过刚才的活动我们知道了哪些是最简分数,哪些不是最简分数。你能把这些不是最简分数的分数化成最简分数吗?试一试:把18/24,6/18,10/35化成最简分数。学生完成后集体订正。三、课堂小结(略)四、课堂作业 练习五第4,5,6题。通分(一)【教学内容】 教科书第23页例1及相关练习。【教学目标】1认识公倍数和最小公倍数,能找出两个非零自然数的公倍数和最小公倍数。2培养学生的分析能力、类推能力和归纳概括能力。3通过学生的成功体验,培养学生对数学的学习兴趣,坚定学生学好数学的信心。【教学过程】一、复习引入1什么是倍数?你能找出50以内3的倍数、7的倍数和9的倍数吗?2 27是哪些数的倍数?3请你说一说找倍数的方法。师:这节课我们就要应用这些知识来学习公倍数和最小公倍数。(板书课题)二、探索新知1探讨什么是公倍数和最小公倍数师:同学们已经掌握了找一个数倍数的方法,下面请同学们用这种方法找出50以内4的倍数和6的倍数。在自己的练习单中把4的倍数用圆圈圈起来,把6的倍数用三角形圈起来。练习单: 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 50师:在用圆和三角形圈4和6的倍数时,你们发现了什么?生:我发现有的数