欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年高中数学全套教案新人教版选修- .pdf

    • 资源ID:34229783       资源大小:1.01MB        全文页数:47页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年高中数学全套教案新人教版选修- .pdf

    高中数学选修 2-3 教案王国昌修订- 1 - 高中数学选修2-3 修订教案王国昌名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 2 - 1.1 基本计数原理(第一课时)教学目标:(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题教学重点:(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题教学过程一、复习引入:一次集会共50 人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?某商场有东南西北四个大门,当你从一个大门进去又从另一个大门出来,问你共有多少种不同走法?二、讲解新课:问题1 春天来了,要从济南到北京旅游,有三种交通工具供选择:长途汽车、旅客列车和客机。已知当天长途车有2 班,列车有3班。问共有多少种走法?设问 1: 从济南到北京按交通工具可分_类方法 ? 第一类方法 , 乘火车,有 _ 种方法 ; 第二类方法 , 乘汽车,有 _ 种方法 ; 从甲地到乙地共有_ 种方法设问 2:每类方法中的每种一方法有什么特征?问题 2:春天来了,要从济南到北京旅游,若想中途参观南开大学,已知从济南到天津有3 种走法,从天津到北京有两种走法;问要从济南到北京共有多少种不同的方法?从济南到北京须经_ 再由 _到北京有 _个步骤第一步 , 由济南去天津有_种方法第二步 , 由天津去北京有_种方法 , 设问 2:上述每步的每种方法能否单独实现从济南村经天津到达北京的目的? 1 分类计数原理: (1)加法原理:如果完成一件工作有K 种途径,由第1 种途径有n1 种方法可以完成,由第2 种途径有n2 种方法可以完成,由第k 种途径有nK 种方法可以完成。那么,完成这件工作共有n1+n2+ +nK 种不同的方法。1. 标准必须一致, 而且全面、不重不漏!2“类”与“类”之间是并列的、互斥的、独立的即:它们两两的交集为空集!3 每一类方法中的任何一种方法均能将这件事情从头至尾完成2,乘法原理:如果完成一件工作可分为K个步骤,完成第1 步有 n1种不同的方法,完成第2 步有 n2种不同的方法,完成第K 步有 nK种不同的方法。那么,完成这件工作共有n1n2 nK种不同方法1 标准必须一致、正确。2“步”与“步”之间是连续的, 不间断的 , 缺一不可 ; 但也不能重复、交叉。3 若完成某件事情需n 步, 每一步的任何一种方法只能完成这件事的一部分且必须依次完成这n 个步骤后 , 这件事情才算完成。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 3 - 三、例子例 1书架的第1 层放有 4 本不同的计算机书,第2 层放有 3 本不同的文艺书,第3 层放有 2 本不同的体育书,(1)从书架上任取1 本书,有多少种不同的取法?(2)从书架的第1、2、3 层各取 1 本书,有多少种不同的取法?解: (1)从书架上任取1 本书,有 3 类办法:第 1 类办法是从第1 层取 1 本计算机书,有4 种方法;第 2 类是从第 2 层取 1 本文艺书,有3 种方法;第 3 类办法是从第3 层取 1 本体育书,有2 种方法 根据分类计数原理,不同取法的种数是4+3+2=9 种所以,从书架上任取1 本书,有 9 种不同的取法;(2)从书架的第1、2、3 层各取 1 本书,可以分成3 个步骤完成:第1 步从第 1 层取 1 本计算机书,有 4 种方法;第2步从第 2 层取 1 本艺术书,有3 种方法;第 3 步从第 3 层取 1 本体育书,有2 种方法 根据分步计数原理,从书架的第1、2、 3 层各取 1 本书,不同取法的种数是4 3 2 24种所以,从书架的第1、 2、3 层各取 1 本书,有 24 种不同的取法例 2一种号码拨号锁有4 个拨号盘,每个拨号盘上有从0 到 9 共 10 个数字,这4 个拨号盘可以组成多少个四位数号码?解:每个拨号盘上的数字有10 种取法,根据分步计数原理,4 个拨号盘上各取1 个数字组成的四位数字号码的个数是10 10 10 1010000N,所以,可以组成10000 个四位数号码例 3要从甲、乙、丙3 名工人中选出2 名分别上日班和晚班,有多少种不同的选法?解:从 3 名工人中选1 名上日班和1 名上晚班,可以看成是经过先选1 名上日班,再选1 名上晚班两个步骤完成,先选1 名上日班,共有3 种选法;上日班的工人选定后,上晚班的工人有2 种选法根据分步技数原理,不同的选法数是326N种, 6 种选法可以表示如下:日班晚班甲乙甲丙乙甲乙丙丙甲丙乙所以,从3 名工人中选出2 名分别上日班和晚班,6 种不同的选法例 4,若分给你10 块完全一样的糖,规定每天至少吃一块,每天吃的块数不限,问共有多少种不同的吃法? n 块糖呢?课堂小节: 本节课学习了两个重要的计数原理及简单应用课堂练习:课后作业:名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 4 - 1.1 基本计数原理(第二课时)教学目标:会利用两个原理分析和解决一些简单的应用问题教学重点:会利用两个原理分析和解决一些简单的应用问题教学过程一、复习引入:1、分类计数原理: (1)加法原理:如果完成一件工作有k 种途径,由第1 种途径有 n1种方法可以完成,由第2 种途径有 n2种方法可以完成,由第k 种途径有 nk种方法可以完成。那么,完成这件工作共有n1+n2+ +nk种不同的方法。2,乘法原理:如果完成一件工作可分为K个步骤,完成第1 步有 n1种不同的方法,完成第2 步有 n2种不同的方法,完成第K步有 nK种不同的方法。那么,完成这件工作共有n1n2nk种不同方法二、讲解新课:例 1 书架上放有3 本不同的数学书,5 本不同的语文书,6 本不同的英语书(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?例 2 在 120 共 20 个整数中取两个数相加, 使其和为偶数的不同取法共有多少种? 解: 取ba与取ab是同一种取法 . 分类标准为两加数的奇偶性, 第一类 , 偶偶相加 ,由分步计数原理得 (10 9)/2=45种取法 , 第二类 , 奇奇相加, 也有 (10 9)/2=45种取法 . 根据分类计数原理共有45+45=90 种不同取法 . 例 3 如图一 , 要给 , , , 四块区域分别涂上五种颜色中的某一种, 允许同一种颜色使用多次,但相邻区域必须涂不同颜色, 则不同涂色方法种数为() A. 180 B. 160 C. 96 D. 60若变为图二 , 图三呢 ?(240 种,5 444=320 种) 例 5 75600 有多少个正约数?有多少个奇约数? 解:75600 的约数就是能整除75600 的整数 , 所以本题就是分别求能整除75600 的整数和奇约数的个数 . 由于 75600=2433527 (1) 75600的每个约数都可以写成lkjl7532的形式,其中40i,30j,20k,10l图一图二图三名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 5 - 于是 ,要确定 75600 的一个约数 , 可分四步完成 , 即lkji,分别在各自的范围内任取一个值,这样i有 5 种取法 ,j有 4 种取法 ,k有 3 种取法 ,l有 2 种取法 , 根据分步计数原理得约数的个数为5432=120 个. (2) 奇约数中步不含有2的因数 , 因此 75600 的每个奇约数都可以写成lkj753的形式 , 同上奇约数的个数为432=24 个 .课堂小节: 本节课学习了两个重要的计数原理的应用课堂练习:课后作业:1.2.1 排列(第一课时)教学目标:理解排列、排列数的概念,了解排列数公式的推导教学重点:理解排列、排列数的概念,了解排列数公式的推导教学过程一、复习引入:1、分类计数原理: (1)加法原理:如果完成一件工作有k 种途径,由第1 种途径有 n1种方法可以完成,由第2 种途径有 n2种方法可以完成,由第k 种途径有 nk种方法可以完成。那么,完成这件工作共有n1+n2+ +nk种不同的方法。2,乘法原理:如果完成一件工作可分为K个步骤,完成第1 步有 n1种不同的方法,完成第2 步有 n2种不同的方法,完成第K步有 nK种不同的方法。那么,完成这件工作共有n1n2nk种不同方法二、讲解新课:1排列的概念:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列说明: (1)排列的定义包括两个方面:取出元素,按一定的顺序排列;(2)两个排列相同的条件:元素完全相同,元素的排列顺序也相同2排列数的定义:从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示注意区别排列和排列数的不同:“一个排列” 是指:从n个不同元素中, 任取m个元素按照一定的顺序排成一列,不是数; “排列数”是指从n个不同元素中,任取m(mn)个元素的所有排列的个数,是一个数所以符号mnA只表示排列数,而不表示具体的排列3排列数公式及其推导:名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 6 - 求mnA以按依次填m个空位来考虑(1)(2)(1)mnAn nnnm,排列数公式:(1)(2)(1)mnAn nnnm=!()!nnm(,m nNmn)说明: (1)公式特征:第一个因数是n,后面每一个因数比它前面一个少 1,最后一个因数是1nm,共有m个因数;(2)全排列:当nm时即n个不同元素全部取出的一个排列全排列数:(1)(2)2 1!nnAn nnn(叫做 n 的阶乘)4.例子:例 1计算:(1)316A;(2)66A;(3)46A解: (1)316A16 15 14 3360 ;(2)66A6!720 ;(3)46A6 5 4 3360例 2 (1)若17 16 1554mnA,则n,m(2)若,nN则(55)(56)(68)(69)nnnn用排列数符号表示解: (1)n 17 ,m 14 (2)若,nN则(55)(56)(68)(69)nnnn1569nA例 3 (1)从2,3,5,7,11这五个数字中,任取2 个数字组成分数,不同值的分数共有多少个?(2)5 人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A组)联赛共有14 队参加,每队都要与其余各队在主客场分别比赛1 次,共进行多少场比赛?解: (1)255420A;(2)555432 1120A;(3)21414 13182A课堂小节: 本节课学习了排列、排列数的概念,排列数公式的推导课堂练习:课后作业:名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 7 - 1.2.1 排列(第二课时)教学目标:掌握解排列问题的常用方法教学重点:掌握解排列问题的常用方法教学过程一、复习引入:1排列的概念:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列说明: (1)排列的定义包括两个方面:取出元素,按一定的顺序排列;(2)两个排列相同的条件:元素完全相同,元素的排列顺序也相同2排列数的定义:从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示注意区别排列和排列数的不同:“一个排列” 是指:从n个不同元素中, 任取m个元素按照一定的顺序排成一列,不是数; “排列数”是指从n个不同元素中,任取m(mn)个元素的所有排列的个数,是一个数所以符号mnA只表示排列数,而不表示具体的排列3排列数公式及其推导:(1)(2)(1)mnAn nnnm(,m nNmn)全排列数:(1)(2)2 1!nnAn nnn(叫做 n 的阶乘)二、讲解新课:解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等解排列问题和组合问题,一定要防止“重复”与“遗漏”互斥分类分类法先后有序位置法反面明了排除法相邻排列捆绑法分离排列插空法例 1 求不同的排法种数:(1)6 男 2 女排成一排, 2 女相邻;(2)6 男 2 女排成一排, 2 女不能相邻;(3)4 男 4 女排成一排,同性者相邻;(4)4 男 4 女排成一排,同性者不能相邻名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 8 - 例 2 在 3000 与 8000 之间,数字不重复的奇数有多少个?分析符合条件的奇数有两类一类是以1、9 为尾数的,共有P21种选法,首数可从3、4、5、6、7中任取一个,有P51种选法,中间两位数从其余的8 个数字中选取2 个有 P82种选法,根据乘法原理知共有 P21P51P82个;一类是以3、5、7 为尾数的共有P31P41P82个解符合条件的奇数共有P21P51P82+P31P41P82=1232 个答在 3000 与 8000 之间,数字不重复的奇数有1232 个例 3 某小组 6 个人排队照相留念(1) 若分成两排照相,前排2 人,后排 4人,有多少种不同的排法?(2) 若分成两排照相,前排2 人,后排 4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3) 若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4) 若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5) 若排成一排照相,其中有3 名男生 3 名女生,且男生不能相邻有多少种排法?(6) 若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析 (1) 分两排照相实际上与排成一排照相一样,只不过把第3 6 个位子看成是第二排而已,所以实际上是6 个元素的全排列问题(2) 先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种因为这是分步问题,所以用乘法原理,有P21P41 P44种不同排法(3) 采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法然后甲、乙两人之间再排队,有P22种排法因为是分步问题,应当用乘法原理,所以有P55P22种排法(4) 甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法(5) 采用“插入法” ,把 3 个女生的位子拉开,在两端和她们之间放进4 张椅子, 如_女_女_女_,再把 3 个男生放到这4 个位子上,就保证任何两个男生都不会相邻了这样男生有P43种排法,女生有P33种排法因为是分步问题,应当用乘法原理,所以共有P43P33种排法(6) 符合条件的排法可分两类:一类是乙站排头,其余5 人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4 人中任选1 人有 P41种排法,排尾从除乙以外的 4 人中选一人有P41种排法,中间4 个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法解 (1)P66=720( 种) (2)P21P41 P44=2424=192( 种) (3)P55P22=1202=240(种) (4)P66=360( 种) (5)P43P33=246=144( 种) (6)P55+P41P41P44=120+4424=504( 种 ) 或法二: (淘汰法 )P66-2P55+P44=720-240+24=504( 种) 课堂小节: 本节课学习了排列、排列数的概念,排列数公式的推导课堂练习:课后作业:名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 9 - 1.2.2 组合(第一课时)教学目标:1. 理解组合的意义,掌握组合数的计算公式;2. 能正确认识组合与排列的联系与区别教学重点:理解组合的意义,掌握组合数的计算公式教学过程一、复习引入:1排列的概念:从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列说明: (1)排列的定义包括两个方面:取出元素,按一定的顺序排列;(2)两个排列相同的条件:元素完全相同,元素的排列顺序也相同2排列数的定义:从n个不同元素中,任取m(mn)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示注意区别排列和排列数的不同:“一个排列” 是指:从n个不同元素中, 任取m个元素按照一定的顺序排成一列,不是数; “排列数”是指从n个不同元素中,任取m(mn)个元素的所有排列的个数,是一个数所以符号mnA只表示排列数,而不表示具体的排列3排列数公式及其推导:(1)(2)(1)mnAn nnnm(,m nNmn)全排列数:(1)(2)2 1!nnAn nnn(叫做 n 的阶乘)二、讲解新课:1 组合的概念: 一般地, 从n个不同元素中取出mmn个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合说明:不同元素;“只取不排”无序性;相同组合:元素相同2组合数的概念:从n个不同元素中取出mmn个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数用符号mnC表示3组合数公式的推导:(1)一般地,求从n个不同元素中取出m个元素的排列数mnA,可以分如下两步:先求从n个不同元素中取出m个元素的组合数mnC; 求每一个组合中m个元素全排列数mmA,根据分步计数原理得:mnAmnCmmA名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 10 - (2)组合数的公式:(1)(2)(1)!mmnnmmAn nnnmCAm或)!( !mnmnCmn),(nmNmn且例子:1、计算:(1)47C;(2)710C;(1)解:4776 544!C35;(2)解法 1:71010 98 76 547!C120解法 2:71010!10 9 87!3!3!C1202、求证:11mnmnCmnmC证明:)!( !mnmnCmn111!(1)!(1)!mnmmnCnmnmmnm1!(1)! ()(1)!mnmnmnm!()!nm nm11mnmnCmnmC3、在 52 件产品中,有50 件合格品, 2 件次品,从中任取5 件进行检查(1)全是合格品的抽法有多少种?(2)次品全被抽出的抽法有多少种?(3)恰有一件次品被抽出的抽法有多少种?(4)至少有一件次品被抽出的抽法有多少种?4、名男生和 6 名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?解法一: (直接法) 小组构成有三种情形:3 男,2 男 1 女,1 男 2 女,分别有34C,1624CC,2614CC,所以,一共有34C+1624CC+2614CC 100种方法解法二:(间接法)10036310CC课堂小节: 本节课学习了组合的意义,组合数的计算公式课堂练习:课后作业:名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 11 - 1.2.2 组合(第二课时)教学目标:1掌握组合数的两个性质;2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题教学重点:掌握组合数的两个性质教学过程一、复习引入:1 组合的概念: 一般地, 从n个不同元素中取出mmn个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合说明:不同元素;“只取不排”无序性;相同组合:元素相同2组合数的概念:从n个不同元素中取出mmn个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数用符号mnC表示3组合数公式的推导:(1)一般地,求从n个不同元素中取出m个元素的排列数mnA,可以分如下两步:先求从n个不同元素中取出m个元素的组合数mnC; 求每一个组合中m个元素全排列数mmA,根据分步计数原理得:mnAmnCmmA(2)组合数的公式:(1)(2)(1)!mmnnmmAn nnnmCAm或)!( !mnmnCmn),(nmNmn且二、讲解新课:1 组合数的性质1:mnnmnCC一般地,从n个不同元素中取出m个元素后,剩下nm个元素因为从n个不同元素中取出m个元素的每一个组合,与剩下的nm个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出nm个元素的组合数,即:mnnmnCC在这里,主要体现:“取法”与“剩法”是“一一对应”的思想证明:)!( !)!()!(!mnmnmnnmnnCmnn又)!( !mnmnCmn,mnnmnCC说明:规定:10nC;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 12 - 等式特点:等式两边下标同,上标之和等于下标;ynxnCCyx或nyx2组合数的性质2:mnC1mnC+1mnC一般地,从121,naaa这n+1 个不同元素中取出m个元素的组合数是mnC1,这些组合可以分为两类:一类含有元素1a,一类不含有1a含有1a的组合是从132,naaa这n个元素中取出m 1 个元素与1a组成的,共有1mnC个;不含有1a的组合是从132,naaa这n个元素中取出m个元素组成的,共有mnC个根据分类计数原理,可以得到组合数的另一个性质在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想证明:)!1()!1(!)!( !1mnmnmnmnCCmnmn)!1(!)1( !mnmmnmnn)!1( !)1(mnmnmmn)!1( !)!1(mnmnmnC1mnC1mnC+1mnC3. 例子1 ( 1)计算:69584737CCCC;(2)求证:nmC2nmC+12nmC+2nmC解: (1)原式4565664889991010210CCCCCCC;证明: (2)右边1121112()()nnnnnnnmmmmmmmCCCCCCC左边2解方程:(1)3213113xxCC; ( 2)解方程:333222101xxxxxACC解: (1)由原方程得123xx或12313xx,4x或5x,又由111312313xxxN得28x且xN,原方程的解为4x或5x上述求解过程中的不等式组可以不解, 直接把4x和5x代入检验 , 这样运算量小得多. (2)原方程可化为2333110 xxxCA,即5333110 xxCA,(3)!(3)!5!(2)!10!xxxx,11120(2)!10(1) (2)!xx xx,2120 xx,解得4x或3x,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 12 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 13 - 经检验:4x是原方程的解3. 有同样大小的4 个红球, 6 个白球。(1) 从中任取4 个,有多少种取法?(2) 从中任取4 个,使白球比红球多,有多少种取法?(3) 从中任取4 个,至少有一个是红球,有多少种取法?(4) 假设取 1 个红球得 2 分,取 1 个白球得 1 分。从中取 4 个球,使总分不小于5 分的取法有多少种?课堂小节: 本节课学习了组合数的两个性质课堂练习:课后作业:1.2.2 组合(第三课时)教学目标:1、进一步巩固组合、组合数的概念及其性质;2、能够解决一些组合应用问题教学重点:解决一些组合应用问题教学过程一、复习引入:1 组合的概念: 一般地, 从n个不同元素中取出mmn个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合说明:不同元素;“只取不排”无序性;相同组合:元素相同2组合数的概念:从n个不同元素中取出mmn个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数用符号mnC表示3组合数公式的推导:(1)一般地,求从n个不同元素中取出m个元素的排列数mnA,可以分如下两步:先求从n个不同元素中取出m个元素的组合数mnC; 求每一个组合中m个元素全排列数mmA,根据分步计数原理得:mnAmnCmmA名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 13 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 14 - (2)组合数的公式:(1)(2)(1)!mmnnmmAn nnnmCAm或)!( !mnmnCmn),(nmNmn且4. 组合数的性质1:mnnmnCC5. 组合数的性质2:mnC1mnC+1mnC二、讲解新课:例子1 (1) 把 n+1 个不同小球全部放到n 个有编号的小盒中去,每小盒至少有1 个小球,共有多少种放法?(2) 把 n+1 相同的小球,全部放到n 个有编号的小盒中去,每盒至少有1 个小球,又有多少种放法?(3) 把 n+1 个不同小球,全部放到n 个有编号的小盒中去,如果每小盒放进的球数不限,问有多少种放法?2从编号为1, 2,3, 10,11 的共 11 个球中,取出5 个球,使得这5 个球的编号之和为奇数,则一共有多少种不同的取法?解:分为三类:1 奇 4 偶有4516CC; 3奇 2 偶有2536CC; 5奇 1 偶有56C,一共有4516CC+2536CC+23656C3现有 8 名青年,其中有5 名能胜任英语翻译工作;有4 名青年能胜任德语翻译工作(其中有1 名青年两项工作都能胜任) ,现在要从中挑选5 名青年承担一项任务,其中 3 名从事英语翻译工作,2 名从事德语翻译工作,则有多少种不同的选法?解:我们可以分为三类:让两项工作都能担任的青年从事英语翻译工作,有2324CC;让两项工作都能担任的青年从事德语翻译工作,有1334CC;让两项工作都能担任的青年不从事任何工作,有2334CC,一共有2324CC+1334CC+2334CC42 种方法4甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?解法一:(排除法)422131424152426CCCCCC解法二:分为两类:一类为甲不值周一,也不值周六,有2324CC;另一类为甲不值周一,但值周六,有2414CC,一共有2414CC+2324CC42 种方法56 本不同的书全部送给5 人,每人至少1 本,有多少种不同的送书方法?名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 14 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 15 - 解:第一步:从6 本不同的书中任取2 本“捆绑”在一起看成一个元素有26C种方法;第二步:将5 个“不同元素(书) ”分给 5 个人有55A种方法根据分步计数原理,一共有26C55A1800 种方法6.从 6 双不同手套中,任取4 只,(1) 恰有 1 双配对的取法是多少?(2) 没有 1 双配对的取法是多少?(3) 至少有 1 双配对的取法是多少?课堂小节: 本节课学习了组合数的应用课堂练习:课后作业:1.3.1 二项式定理教学目标:1、能用计数原理证明二项式定理;2、掌握二项式定理及二项式展开式的通项公式教学重点:掌握二项式定理及二项式展开式的通项公式教学过程一、复习引入:22202122222()2abaabbC aC abC b;33223031222333333()33abaa babbC aC a bC abC b4()()()()()abababab ab的各项都是4次式,即展开式应有下面形式的各项:4a,3a b,22a b,3ab,4b,展开式各项的系数:上面4个括号中,每个都不取b的情况有1种,即04C种,4a的系数是04C;恰有1个取b的情况有14C种,3a b的系数是14C,恰有2个取b的情况有24C种,22a b的系数是24C,恰有3个取b的情况有34C种,3ab的系数是34C,有4都取b的情况有44C种,4b的系数是44C,40413222334444444()abC aC a bC a bC a bC b二、讲解新课:1、二项式定理:01()()nnnrn rrnnnnnnabC aC a bC abC bnN名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 15 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 16 - 2、二项式定理的证明。(a+b)n是 n 个( a+b)相乘,每个(a+b)在相乘时,有两种选择,选a 或 b,由分步计数原理可知展开式共有2n项(包括同类项) ,其中每一项都是akbn-k的形式, k=0,1, ,n;对于每一项 akbn-k, 它是由 k 个 (a+b)选了 a, n-k 个(a+b) 选了 b 得到的,它出现的次数相当于从n 个(a+b)中取 k 个 a 的组合数,将它们合并同类项,就得二项展开式,这就是二项式定理。3、它有1n项,各项的系数(0,1,)rnCrn叫二项式系数 ,4、rn rrnC ab叫二项展开式的通项 ,用1rT表示,即通项1rn rrrnTC ab5、二项式定理中,设1,abx,则1(1)1nrrnnnxC xC xx三、例子例 1展开41(1)x解一:411233444411111(1)1( )()( )( )CCCxxxxx23446411xxxx解二:4444413123444111(1)( ) (1)( )1xxC xC xC xxxx23446411xxxx例 2展开61(2)xx解:66311(2)(21)xxxx61524332216666631(2 )(2 )(2 )(2 )(2 )(2 )1xCxCxCxCxCxx32236012164192240160 xxxxxx例 3求12()xa的展开式中的倒数第4项解:12()xa的展开式中共13项,它的倒数第4项是第10项,912 99339399 11212220TC xaC x ax a例 4求( 1)6(23 )ab, (2)6(32 )ba的展开式中的第3项名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 16 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 17 - 解: (1)242422 16(2 ) (3 )2160TCaba b,(2)242422 16(3 ) (2 )4860TCbab a点评:6(23 )ab,6(32 )ba的展开后结果相同,但展开式中的第r项不相同例 5 (1)求93()3xx的展开式常数项;(2)求93()3xx的展开式的中间两项解:3992921993()()33rrrrrrrxTCCxx,( 1)当390,62rr时展开式是常数项,即常数项为637932268TC;(2)93()3xx的展开式共10项,它的中间两项分别是第5项、第6项,48 99 12593423TCxx,159510 932693378TCxx课堂小节: 本节课学习了二项式定理及二项式展开式的通项公式课堂练习:课后作业:1.3.2 杨辉三角教学目标:理解和掌握二项式系数的性质,并会简单的应用教学重点:理解和掌握二项式系数的性质,并会简单的应用教学过程一、复习引入:1二项式定理01()()nnnrn rrnnnnnnabC aC a bC abC bnN,2二项展开式的通项公式:1rn rrrnTC ab二、讲解新课:1 二项式系数表(杨辉三角)名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 17 页,共 47 页 - - - - - - - - - 高中数学选修 2-3 教案王国昌修订- 18 - ()nab展开式的二项式系数,当n依次取1,2,3时, 二项式系数表, 表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和2二项式系数的性质:(1)对称性与首末两端“等距离”的两个二项式系数相等(mn mnnCC) (2)增减性与最大值1(1)(2)(1)1!kknnn nnnknkCCkk,knC相对于1knC的增减情况由1nkk决定,1112nknkk,当12nk时,二项式系数逐渐增大由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当n是偶数时,中间一项2nnC取得最大值;当n是奇数时,中间两项12nnC,12nnC取得最大值(3)各二项式系数和:1(1)1nrrnnnxC xC xx,令1x,则0122nrnnnnnnCCCCC三、例子例 1在()nab的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和证明:在展开式01()()nnnrn rrnnnnnnabC aC a bC abC bnN中,令1,1ab,则0123(1 1)( 1)nnnnnnnnCCCCC,即02130()()nnnnCC

    注意事项

    本文(2022年高中数学全套教案新人教版选修- .pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开