欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年高一数学函数解析式的七种求法 .pdf

    • 资源ID:34238454       资源大小:77.38KB        全文页数:5页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年高一数学函数解析式的七种求法 .pdf

    函 数 解 析 式 的 七 种 求 法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。例 1设)(xf是一次函数,且34)(xxff,求)(xf解:设baxxf)()0(a,则babxabbaxabxafxff2)()()(342baba3212baba或32)(12)(xxfxxf或二、配凑法:已知复合函数( )f g x的表达式,求( )f x的解析式,( )f g x的表达式容易配成( )g x的运算形式时,常用配凑法。但要注意所求函数( )f x的定义域不是原复合函数的定义域,而是( )g x的值域。例 2已知221)1(xxxxf)0(x,求( )f x的解析式解:2)1()1(2xxxxf,21xx2)(2xxf)2(x三、换元法:已知复合函数( )f g x的表达式时,还可以用换元法求( )f x的解析式。与配凑法一样,要注意所换元的定义域的变化。例 3已知xxxf2) 1(,求)1(xf解:令1xt,则1t,2)1(txxxxf2)1(, 1)1(2) 1()(22ttttf1)(2xxf)1(xxxxxf21) 1()1(22)0(x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例 4 已知:函数)(2xgyxxy与的图象关于点)3 ,2(对称,求)(xg的解析式名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 5 页 - - - - - - - - - 解:设),(yxM为)(xgy上任一点,且),(yxM为),(yxM关于点)3 ,2(的对称点则3222yyxx,解得:yyxx64,点),(yxM在)(xgy上xxy2把yyxx64代入得:)4()4(62xxy整理得672xxy67)(2xxxg五、构造方程组法:假设已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例 5设,)1(2)()(xxfxfxf满足求)(xf解xxfxf)1(2)(显然,0 x将x换成x1,得:xxfxf1)(2)1(解 联立的方程组,得:xxxf323)(例 6 设)(xf为偶函数,)(xg为奇函数,又,11)()(xxgxf试求)()(xgxf和的解析式解)(xf为偶函数,)(xg为奇函数,)()(),()(xgxgxfxf又11)()(xxgxf ,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 5 页 - - - - - - - - - 用x替换x得:11)()(xxgxf即11)()(xxgxf解 联立的方程组,得11)(2xxf,xxxg21)(利用判别式求值域时应注意的问题用判别式法求值域是求函数值域的常用方法,但在教学过程中,很多学生对用判别式求值域掌握不好。一是不理解为什么可以这样做,二是学生对哪些函数求值域可以用判别式法,哪些函数不能也比较模糊。本人结合自己的教学实践谈谈对本内容的一点体会。一、判别式法求值域的理论依据例1、 求函数122xxxxy的值域象这种分子、分母的最高次为2 次的分式函数可以考虑用判别式法求值域。解:由122xxxxy得:y-1x2+(1-y)x+y=0 上式中显然y1,故式是关于x 的一元二次方程13111, 1310) 1(4)1(222,xxxxyyy,yyy的值域为又解得令用判别式法求函数的值域是求值域的一种重要的方法,但在用判别式法求值域时经常出错,因此在用判别式求值域时应注意以下几个问题:一、要注意判别式存在的前提条件,同时对区间端点是否符合要求要进行检验例:求函数322122xxxxy的值域。错解:原式变形为0)13() 12() 12(2yxyxyRx,0) 13)(12(4)12(2yyy,解得21103y。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 5 页 - - - - - - - - - 故所求函数的值域是21,103错因:把21y代入方程显然无解,因此21y不在函数的值域内。事实上,21y时,方程的二次项系数为 0,显然不能用“”来判定其根的存在情况。正解:原式变形为0)13() 12() 12(2yxyxy1当21y时,方程无解;2当21y时,Rx,0)13)(12(4) 12(2yyy,解得21103y。综合1 、 2知此函数的值域为)21,103二、注意函数式变形中自变量的取值范围的变化例2:求函数63422xxxxy的值域。错解:将函数式化为0) 36()4() 1(2yxyxy1当1y时,代入上式得093x,3x,故1y属于值域;2当1y时,0)25(2y,综合1 、 2可得函数的值域为Ry。错因:解中函数式化为方程时产生了增根3x与2x虽不在定义域内,但是方程的根 ,因此最后应该去掉3x与2x时方程中相应的y值。所以正确答案为1|yy,且52y。三、注意变形后函数值域的变化例3:求函数21xxy的值域。错解:由已知得21xxy,两边平方得221)(xxy整理得012222yyxx,由0) 1(8)2(22yy,解得22y。故函数得值域为2,2。错因:从式变形为式是不可逆的,扩大了y的取值范围。由函数得定义域为1 , 1易知1xy,因此函数得最小值不可能为2。1x时,1y,1miny,故函数的值域应为2, 1。四、注意变量代换中新、旧变量取值范围的一致性名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 5 页 - - - - - - - - - 例4:求函数5422xxy的值域。错解:令42xt,则12tty,02ytyt,由0412y及0y得值域为21,0(y。错因:解法中无视了新变元t满足条件2t。设ytyttf2)(,0y,),2t,2210)2(0)2(0,0yffy或520y。故函数得值域为520,(。综上所述,在用判别式法求函数得值域时,由于变形过程中易出现不可逆得步骤,从而改变了函数得定义域或值域。因此,用判别式求函数值域时,变形过程必须等价,必须考虑原函数得定义域,判别式存在的前提,并注意检验区间端点是否符合要求。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 5 页 - - - - - - - - -

    注意事项

    本文(2022年高一数学函数解析式的七种求法 .pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开