欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年MBA数学公式集锦 .pdf

    • 资源ID:34243983       资源大小:318.19KB        全文页数:25页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年MBA数学公式集锦 .pdf

    名师推荐精心整理学习必备MBA 数学常用公式初等数学一、初等代数1.乘法公式与因式分解:(1)222)2abaabb(2)2222)222abcabcabacbc(3)22()()abab ab(4)33223)33abaa babb(5)3322()()abab aabb2.指数(1)mnm naaa(2)mnm naaa(3)()mnmnaa(4)()mmmaba b(5)()mmmaabb(6)1mmaa3.对数(log,0,1aN aa)(1)对数恒等式l o gaNNa,更常用ln NNe(2)log ()loglogaaaMNMN(3)log ()loglogaaaMMNN(4)log ()lognaaMnM(5)1loglognaaMMn(6)换底公式logloglogbabMMa(7)log 10a,log1aa4.排列、组合与二项式定理(1)排列(1) (2 )(1mnPn nnnm名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备b h a b c a h B A C (2)全排列(1) (2 )3 2 1nnPn nnn(3)组合(1) (2 )(1) ! () !mnn nnnmnCmmnm组合的性质:(1)mn mnnCC(2)111mmmnnnCCC(3)二项式定理01111nnnnnnnnnnC aC abLCa bC bn(a+b)展开式特征:1)11,0,1,.,kn kkknkTC abkn通项公式:第项为2)1n项数:展开总共项3)指数:1100;anbn逐渐减逐渐加的指数:由;的指数:由各项a与b的指数之和为 n4)展开式的最大系数:212132nnnnCnCn当n为偶数时,则中间项(第项)系数最大2n+1当n为奇数时,则中间两项(第和项)系数最大。2展开式系数之间的关系1)n rnCrnC,即与首末等距的两相系数相等。012 .2nnnnnCCC),即展开式各项系数之和为2n024135132,nnnnnnnCCCCCC)即奇数项系数和等于偶数项系数和二、平面几何1. 图形面积(1)任意三角形11sin22SbhabC(2)平行四边形:sinSbhab(3)梯形: S中位线高12(上底下底)高名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备r l O l H R (4)扇形:21122Srlr弧长lr2. 旋转体(1)圆柱设 R底圆半径H柱高,则1) 侧面积:2SRH侧2) 全面积:222SRHR全3) 体积:2VR H(2)圆锥:(22lRH斜高)1)侧面积:SRl侧2)全面积:2SRlR全3)体积:213VR H(3)球设 R底圆半径d直径,则1) 全面积:24SR全2) 体积:343VRMBA 常用公式解析几何1.两点距离公式:设11(,)A x y,22(,)B xy为平面上两点,则A、B 的距离为222121()()dxxyy2.平面直线方程(1)一般式:0AxByC,斜率AkB(2)斜截式:ykxb,kb斜率,截距(3)点斜式:00()yyk xx,通过点00(,)xy,k斜率(4)截距式:1xyab,a0,b0,a、b为两轴上的截距名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备(5)两点式:112121yyxxyyxx3.直线间关系设二直线1111111:0,ALA xB yCkB2222222:0,ALA xB yCkB1)1212/LLkk或111222ABCABC2)12121LLk k或12120A AB B3)重合111222ABCABC1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论 1 直角三角形的两个锐角互余19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角最新汇总MBA 数学常用公式包括如下:1、整数、有理数、实数2、整式、分式3、平均值、绝对值4、方程与不等式5、数列(等差与等比)6、平面几何7、平面解析几何8、排列与组合9、概率初步10、立体几何实用工具 :常用数学公式公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b| |a|+|b| |a-b| |a|+|b| |a| b-bab |a-b| |a|-|b| -|a| a |a| 一元二次方程的解-b+(b2 -4ac)/2a -b-b+(b2-4ac)/2a 根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac0 注:方程有一个实根b2-4ac0 抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积S=c*h 斜棱柱侧面积S=c*h 正棱锥侧面积S=1/2c*h 正棱台侧面积S=1/2(c+c)h 圆台侧面积S=1/2(c+c)l=pi(R+r)l 球的表面积S=4pi*r2 圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l 弧长公式l=a*r a 是圆心角的弧度数r 0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备斜棱柱体积V=SL 注:其中 ,S是直截面面积,L 是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h 数学公式开放分类:数学、概念数学公式, 是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。如一些基本公式抛物线: y = ax* + bx + c 就是 y 等于 ax 的平方加上bx 再加上c a 0 时开口向上a 0 (一)椭圆周长计算公式名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备椭圆周长公式:L=2b+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2b )加上四倍的该椭圆长半轴长( a)与短半轴长(b)的差。(二)椭圆面积计算公式椭圆面积公式:S=ab 椭圆面积定理:椭圆的面积等于圆周率( )乘该椭圆长半轴长(a)与短半轴长(b)的乘积。以上椭圆周长、 面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T 推导演变而来。常数为体,公式为用。椭圆形物体体积计算公式椭圆的 长半径 *短半径 *PAI* 高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式sin(A/2)= (1-cosA)/2) sin(A/2)=- (1 -cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=- (1+cosA)/2) tan(A/2)= (1-cosA)/(1+cosA) tan(A/2)=- (1 -cosA)/(1+cosA) ctg(A/2)= (1+cosA)/(1-cosA) ctg(A/2)=- (1+cosA)/(1-cosA) 和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n 项和名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备1+2+3+4+5+6+7+8+9+ +n=n(n+1)/21+3+5+7+9+11+13+15+ +(2n-1)=n2 2+4+6+8+10+12+14+ +(2n)=n(n+1) 12+22+32+42+52+62+72+82+ +n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+ n3=(n(n+1)/2)2 1*2+2*3+3*4+4*5+5*6+6*7+ +n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角公式分类公式表达式乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b| |a|+|b| |a-b| |a|+|b| |a| b-bab |a-b| |a|-|b| -|a| a |a| 一元二次方程的解-b+(b2 -4ac)/2a -b-(b2 -4ac)/2a 根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理某些数列前n 项和1+2+3+4+5+6+7+8+9+ +n=n(n+1)/2 1+3+5+7+9+11+13+15+ +(2n-1)=n2 2+4+6+8+10+12+14+ +(2n)=n(n+1) 12+22+32+42+52+62+72+82+ +n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+ n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+ +n(n+1)=n(n+1)(n+2)/3 正弦定理a/sina=b/sinb=c/sinc=2r 注:其中r 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb 注:角 b 是边 a 和边 c 的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:( a,b)是圆心坐标圆的一般方程x2+y2+dx+ey+f=0 注: d2+e2-4f0 抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积s=c*h 斜棱柱侧面积s=c*h 正棱锥侧面积s=1/2c*h 正棱台侧面积s=1/2(c+c)h 圆台侧面积s=1/2(c+c)l=pi(r+r)l 球的表面积s=4pi*r2 圆柱侧面积s=c*h=2pi*h 圆锥侧面积s=1/2*c*l=pi*r*l 弧长公式l=a*r a 是圆心角的弧度数r 0 扇形面积公式s=1/2*l*r 锥体体积公式v=1/3*s*h 圆锥体体积公式v=1/3*pi*r2h 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备斜棱柱体积v=sl 注:其中 ,s是直截面面积,l 是侧棱长柱体体积公式v=s*h 圆柱体v=pi*r2h 1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论 1 直角三角形的两个锐角互余19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理 (sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理 ( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论 (aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理 (sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论 3 等边三角形的各角都相等,并且每一个角都等于6034 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论 1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60 的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30 那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理 1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b 的平方和、等于斜边c 的平方,即a2+b2=c2 47 勾股定理的逆定理如果三角形的三边长a、b、c 有关系 a2+b2=c2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于36049 四边形的外角和等于36050 多边形内角和定理n 边形的内角的和等于(n-2) 18051 推论任意多边的外角和等于36052 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积 =对角线乘积的一半,即s=(a b) 2 67 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理 1 关于中心对称的两个图形是全等的72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 12 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b) 2 s=l h 83 (1)比例的基本性质如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么 a:b=c:d 84 (2)合比性质如果 ab=cd,那么 (a b)b=(c d)d 85 (3)等比性质如果 ab=cd= =mn(b+d+ +n 0),那么(a+c+ +m) (b+d+ +n)=ab 86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交, 所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss )95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 13 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。110 垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论 1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 推论 2 圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理一条弧所对的圆周角等于它所对的圆心角的一半117 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118 推论 2 半圆(或直径)所对的圆周角是直角;90 的圆周角所对的弦是直径119 推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120 定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121直线 l 和 o 相交dr 直线 l 和 o 相切d=r 直线 l 和 o 相离dr 122 切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理圆的切线垂直于经过切点的半径124 推论 1 经过圆心且垂直于切线的直线必经过切点125 推论 2 经过切点且垂直于切线的直线必经过圆心126 切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127 圆的外切四边形的两组对边的和相等128 弦切角定理弦切角等于它所夹的弧对的圆周角名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 14 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备129 推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130 相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131 推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132 切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133 推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134 如果两个圆相切,那么切点一定在连心线上135两圆外离d r+r 两圆外切d=r+r 两圆相交r-rdr+r(r r) 两圆内切d=r-r(r r) 两圆内含dr-r(r r) 136 定理相交两圆的连心线垂直平分两圆的公共弦137 定理把圆分成n(n 3): 依次连结各分点所得的多边形是这个圆的内接正n 边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形138 定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139 正 n 边形的每个内角都等于(n-2) 180 n 140 定理正 n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形141 正 n 边形的面积sn=pnrn 2 p 表示正 n 边形的周长142 正三角形面积 3a 4 a 表示边长143 如果在一个顶点周围有k 个正 n 边形的角,由于这些角的和应为360 ,因此 k (n-2)180n=360 化为( n-2) (k-2)=4 144 弧长计算公式:l=n 兀 r180 145 扇形面积公式:s 扇形 =n 兀 r2 360=lr 2 146 内公切线长 = d-(r-r) 外公切线长 = d-(r+r) 图形周长面积体积公式长方形的周长=(长 +宽) 2 正方形的周长=边长 4 长方形的面积=长 宽正方形的面积=边长 边长名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 15 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备三角形的面积=底 高 2 平行四边形的面积=底 高梯形的面积 =(上底 +下底) 高 2 直径 =半径 2 半径 =直径 2 圆的周长 =圆周率 直径 = 圆周率 半径 2 圆的面积 =圆周率 半径 半径长方体的表面积= (长 宽+长 高宽 高) 2 长方体的体积=长 宽 高正方体的表面积=棱长 棱长 6 正方体的体积=棱长 棱长 棱长圆柱的侧面积=底面圆的周长 高圆柱的表面积=上下底面面积+侧面积圆柱的体积 =底面积 高圆锥的体积 =底面积 高 3 长方体(正方体、圆柱体)的体积 =底面积 高平面图形名称符号周长 C 和面积 S 正方形a边长 C4a Sa2 长方形a 和 b边长C2(a+b) Sab 三角形a,b,c三边长ha 边上的高s周长的一半A,B,C 内角其中 s(a+b+c)/2 Sah/2 ab/2?sinC 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 16 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备s(s-a)(s-b)(s-c)1/2 a2sinBsinC/(2sinA)MBA 加油站实用工具 :常用 数学公式公式分类公式表达式乘法与 因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b| |a|+|b| |a-b| |a|+|b| |a|b-bab |a-b| |a|-|b| -|a| a|a| 一元二次方程 的解-b+(b2 -4ac)/2a -b-b+(b2 -4ac)/2a 根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac0 注:方程有一个实根b2-4ac0 抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py 直棱柱 侧面积S=c*h 斜棱柱 侧面积S=c*h 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 17 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备正棱锥 侧面积S=1/2c*h 正棱台侧面积S=1/2(c+c)h 圆台 侧面积S=1/2(c+c)l=pi(R+r)l 球的表面积S=4pi*r2 圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l 弧长公式l=a*r a 是圆心角 的弧度数 r 0 扇形面积公式s=1/2*l*r 锥体 体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h 斜棱柱 体积V=SL 注:其中 ,S是直截面面积,L 是侧棱长柱体 体积公式V=s*h 圆柱体V=pi*r2h 编辑词条发表评论历史版本打印添加到搜藏完善相关词条数学公式开放分类:数学、概念数学公式 ,是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系, 是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。如一些基本公式抛物线: y = ax* + bx + c 就是 y 等于 ax 的平方加上bx 再加上c a 0 时开口向上a 0 (一) 椭圆周长 计算公式椭圆周长 公式: L=2b+4(a-b) 椭圆周长 定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长 ( 2b)加上四倍的该椭圆长半轴长( a)与短半轴长(b)的差。(二)椭圆面积计算公式椭圆面积公式 : S=ab 椭圆面积定理:椭圆的面积等于圆周率 ( )乘该椭圆长半轴长(a)与短半轴长(b)的乘积。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 18 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备以上椭 圆周长 、面积公式 中虽然没有出现椭圆周率 T,但这两个公式都是通过椭圆周率 T 推导演变而来。常数为体,公式为用。椭圆形物体体积计算公式椭圆的 长半径 *短半径 *PAI* 高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式sin(A/2)=(1-cosA)/2) sin(A/2)=- (1 -cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)= - (1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=- (1 -cosA)/(1+cosA) ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA) 和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n 项和1+2+3+4+5+6+7+8+9+ +n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+ +(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=(n(n+1)/2)2 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的 外接圆 半径余弦定理b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角公式分类公式表达式乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b| |a|+|b| |a-b| |a|+|b| |a|b-bab |a-b| |a|-|b| -|a| a|a| 一元二次方程 的解-b+(b2 -4ac)/2a -b-(b2 -4ac)/2a 根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理某些数列前n 项和1+2+3+4+5+6+7+8+9+ +n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+ +(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+ n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1 )(n+2)/3 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 19 页,共 25 页 - - - - - - - - - 名师推荐精心整理学习必备正弦定理a/sina=b/sinb=c/sinc=2r 注:其中 r 表示三角形的 外接圆 半径余弦定理b2=a2+c2-2accosb 注:角 b 是边 a 和边 c 的夹角圆的标准方程(x-a)2+(y

    注意事项

    本文(2022年MBA数学公式集锦 .pdf)为本站会员(Che****ry)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开