欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年初中数学难题 .pdf

    • 资源ID:34244706       资源大小:639.63KB        全文页数:25页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年初中数学难题 .pdf

    学习资料收集于网络,仅供参考学习资料1已知过点( 2,3)的直线 y=ax+b(a0)不经过第一象限,设s=a+2b,则s 的取值范围是()A5sB6sC6sD 7s2关于 x 的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程 y2+2ny+2m=0 同样也有两个整数根且乘积为正,(m 1)2+(n1)22 是否正确?; mn 的取值范围为3设 a 为的小数部分, b 为的小数部分 则的值为()A+1 B+1 C 1 D+14设直线kx+(k+1)y1=0 与坐标轴所构成的直角三角形的面积为Sk,则S1+S2+ +S2008= 5如图,点 A的坐标为( 1,0) ,点 B在直线 y=2x4 上运动,当线段AB最短时,点 B的坐标是6如图, A1B1A2,A2B2A3,A3B3A4, ,AnBnAn+1都是等腰直角三角形,其中点 A1、A2、 、An在 x 轴上,点 B1、B2、 、Bn在直线 y=x 上,已知 OA1=1,则 OA2015的长为7如图,已知一条直线经过点A(0,2) 、点 B(1,0) ,将这条直线向左平移与名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料x 轴、y 轴分别交与点 C、点 D 若 DB=DC ,则直线 CD的函数解析式为8将函数 y=6x 的图象 l1向上平移 5 个单位得直线 l2,则直线 l2与坐标轴围成的三角形面积为9在平面直角坐标系中,点A,B的坐标分别为( m ,3) , (3m 1,3) ,若线段AB与直线 y=2x+1相交,则 m的取值范围为10方程组的解是11已知实数 m ,n 满足 m n2=1,则代数式 m2+2n2+4m 1 的最小值等于12已知整数 k5,若 ABC的边长均满足关于x 的方程 x23x+8=0,则ABC的周长是13已知实数 x 满足,则= 14方程 x2|x| 1=0的根是15已知: a0,化简= 16= 17如果不等式组的解集是 1x2,求:坐标原点到直线y=ax+b距离18用配方法解方程: x2+x2=019已知方程 x2+ (m 1)x+m 10=0的一个根是 3,求 m的值及方程的另一个根参考答案与试题解析名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料一选择题(共3 小题)1 (2014?镇江)已知过点( 2,3)的直线 y=ax+b(a0)不经过第一象限,设 s=a+2b,则 s 的取值范围是()A5sB6sC6sD 7s【考点】 F7:一次函数图象与系数的关系【分析】根据直线 y=ax+b (a0) 不经过第一象限,可知 a0, b0, 直线 y=ax+b(a0)过点( 2,3) ,可知 2a+b=3,依此即可得到 s 的取值范围【解答】 解:直线 y=ax+b(a0)不经过第一象限,a0,b0,直线 y=ax+b(a0)过点( 2,3) ,2a+b=3,a=,b=2a3,s=a+2b=+2b= b,s=a+2b=a+2 (2a3)=3a66,即 s 的取值范围是 6s故选: B【点评】 本题主要考查一次函数图象在坐标平面内的位置与k、b 的关系解答本题注意理解:直线y=kx+b 所在的位置与 k、b 的符号有直接的关系k0 时,直线必经过一、三象限;k0 时,直线必经过二、四象限;b0 时,直线与 y 轴正半轴相交;b=0时,直线过原点;b0 时,直线与 y 轴负半轴相交2 (2015?南充)关于 x 的一元二次方程 x2+2mx+2n=0有两个整数根且乘积为正,关于 y 的一元二次方程 y2+2ny+2m=0 同样也有两个整数根且乘积为正,给出三个结论:这两个方程的根都负根;(m 1)2+(n1)22; 12m 2n1,其中正确结论的个数是()名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料A0 个 B1 个 C 2 个 D3 个【考点】 AB :根与系数的关系; AA :根的判别式【专题】 16 :压轴题【分析】根据题意,以及根与系数的关系,可知两个整数根都是负数;根据根的判别式,以及题意可以得出m22n0 以及 n22m 0,进而得解;可以采用根与系数关系进行解答,据此即可得解【解答】 解:两个整数根且乘积为正,两个根同号,由韦达定理有,x1?x2=2n0,y1?y2=2m 0,y1+y2=2n0,x1+x2=2m 0,这两个方程的根都为负根,正确;由根判别式有:=b24ac=4m28n0,=b24ac=4n28m 0,4m28n0,4n28m 0,m22n0,n22m 0,m22m+1+n22n+1=m22n+n22m+2 2,(m 1)2+(n1)22,正确;由根与系数关系可得2m 2n=y1y2+y1+y2=(y1+1) (y2+1)1,由 y1、y2均为负整数,故( y1+1)?(y2+1)0,故 2m 2n1,同理可得: 2n2m=x1x2+x1+x2=(x1+1) (x2+1)1,得 2n2m 1,即 2m 2n1,故正确故选: D【点评】本题主要考查了根与系数的关系,以及一元二次方程的根的判别式,有一定的难度,注意总结3 (2016?邯郸校级自主招生)设a 为的小数部分, b 为的小数部分则的值为()A+1 B+1 C 1 D+1【考点】 7A:二次根式的化简求值名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料【分析】 首先分别化简所给的两个二次根式,分别求出a、b 对应的小数部分,然后代、化简、运算、求值,即可解决问题【解答】 解:=,a 的小数部分 =1;=,b 的小数部分 =2,=故选 B【点评】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答二填空题(共13小题)4 (2012?麻城市校级自主招生)设直线kx+(k+1)y1=0与坐标轴所构成的直角三角形的面积为Sk,则 S1+S2+ +S2008= 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料【考点】 F5:一次函数的性质【专题】 16 :压轴题; 2A :规律型【分析】 先依次计算出 S1、S2等的面积,再依据规律求解【解答】 解: kx+(k+1)y1=0当 x=0 时,y=;当 y=0时,x=Sk= =,根据公式可知, S1+S2+ +S2008=+ +=(1)=【点评】 结合题意依次计算出S1、S2等的面积,再总结规律,易求解5 (2012?北海)如图,点 A的坐标为( 1,0) ,点 B在直线 y=2x4 上运动,当线段 AB最短时,点 B的坐标是(,)【考点】 F5:一次函数的性质; J4:垂线段最短【专题】 11 :计算题; 16 :压轴题【分析】 作 AB BB ,B 即为当线段 AB最短时 B点坐标,求出 AB 的解析式,与BB 组成方程组,求出其交点坐标即可【解答】 解:设 AB 解析式为 y=kx+b,AB BB ,BB 解析式为 y=2x4,k1k2=1,2k=1,k=,于是函数解析式为y=x+b,将 A(1,0)代入 y=x+b 得,+b=0,b=,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料则函数解析式为 y=x,将两函数解析式组成方程组得,解得,故 B点坐标为(,) 故答案为(,) 【点评】本题考查了一次函数的性质和垂线段最短,找到 B 点是解题的关键,同时要熟悉待定系数法求函数解析式6 (2015?衡阳)如图, A1B1A2,A2B2A3,A3B3A4, ,AnBnAn+1都是等腰直角三角形,其中点 A1、A2、 、An在 x 轴上,点 B1、B2、 、Bn在直线 y=x 上,已知OA1=1,则 OA2015的长为22014【考点】 F8:一次函数图象上点的坐标特征;KW :等腰直角三角形【专题】 16 :压轴题; 2A :规律型【分析】 根据规律得出 OA1=1,OA2=2,OA3=4,OA4=8,所以可得 OAn=2n1,进而解答即可名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料【解答】 解:因为 OA1=1,OA2=2,OA3=4,OA4=8,由此得出 OAn=2n1,所以 OA2015=22014,故答案为: 22014【点评】 此题考查一次函数图象上点的坐标,关键是根据规律得出OAn=2n1进行解答7 (2013?包头)如图,已知一条直线经过点A(0,2) 、点 B(1,0) ,将这条直线向左平移与 x 轴、y 轴分别交与点 C、点 D若 DB=DC ,则直线 CD的函数解析式为y=2x2 【考点】 F9:一次函数图象与几何变换【专题】 16 :压轴题【分析】 先求出直线 AB的解析式,再根据平移的性质求直线CD的解析式【解答】 解:设直线 AB的解析式为 y=kx+b,把 A(0,2) 、点 B(1,0)代入,得,解得,故直线 AB的解析式为 y=2x+2;将这直线向左平移与x 轴负半轴、 y 轴负半轴分别交于点C、点 D ,使 DB=DC ,DO 垂直平分 BC ,OC=OB,直线 CD由直线 AB平移而成,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料CD=AB ,点 D的坐标为( 0,2) ,平移后的图形与原图形平行,平移以后的函数解析式为:y=2x2故答案为: y=2x2【点评】本题考查了一次函数图象与几何变换,要注意利用一次函数的特点,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时 k 的值不变,只有 b 发生变化8 (2010?黄石)将函数y=6x 的图象 l1向上平移 5 个单位得直线 l2,则直线l2与坐标轴围成的三角形面积为【考点】 F9:一次函数图象与几何变换【专题】 11 :计算题; 16 :压轴题【分析】易得 l2的解析式,那么常数项为y 轴上的截距,让纵坐标为0 可得与 x轴的交点,围成三角形的面积=x 轴交点的绝对值 y 轴交点的绝对值【解答】 解:由题意得 l2的解析式为: y=6x+5,与 y 轴的交点为( 0,5) ,与 x 轴的交点为(,0) ,所求三角形的面积 =5=【点评】考查的知识点为:一次函数向上平移,常数项加相应的单位,注意熟练掌握直线与坐标轴围成三角形的面积=x 轴交点的绝对值 y 轴交点的绝对名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料值9 (2015?大连)在平面直角坐标系中,点A,B的坐标分别为( m ,3) , (3m 1,3) ,若线段 AB与直线 y=2x+1 相交,则 m的取值范围为m 1 【考点】 FF:两条直线相交或平行问题【专题】 11 :计算题; 16 :压轴题【分析】 先求出直线 y=3 与直线 y=2x+1的交点为( 1,3) ,再分类讨论:当点B在点 A的右侧,则 m 13m 1,当点 B在点 A的左侧,则 3m 11m ,然后分别解关于 m的不等式组即可【解答】 解:当 y=3 时,2x+1=3,解得 x=1,所以直线 y=3 与直线 y=2x+1 的交点为( 1,3) ,当点 B在点 A的右侧,则 m 13m 1,解得m 1;当点 B在点 A的左侧,则 3m 11m ,无解,所以 m的取值范围为m 1【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标, 就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同10 (2012?徐汇区校级模拟) 方程组的解是【考点】 AF :高次方程【专题】 11 :计算题; 16 :压轴题【分析】 根据 2xy=1,用 x 表示出 y,然后代入第一个方程,得出x 的值后代入,可得出 y 的值【解答】 解:由 2xy=1,可得: y=2x1,代入第一个方程可得: 3x2(2x1)2(2x1)+3=0,解得: x1=3,x2=1,当 x=3 时,y=5;当 x=1 时,y=3;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料故方程组的根为:,故答案为:,【点评】解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可11 (2014?南通)已知实数 m ,n 满足 m n2=1,则代数式 m2+2n2+4m 1 的最小值等于4 【考点】 AE :配方法的应用; 1F:非负数的性质:偶次方【专题】 16 :压轴题; 36 :整体思想【分析】已知等式变形后代入原式, 利用完全平方公式变形, 根据完全平方式恒大于等于 0,即可确定出最小值【解答】 解: m n2=1,即 n2=m 10,m 1,原式 =m2+2m 2+4m 1=m2+6m+9 12=(m+3 )212,则代数式 m2+2n2+4m 1 的最小值等于( 1+3)212=4故答案为: 4【点评】此题考查了配方法的应用, 以及非负数的性质, 熟练掌握完全平方公式是解本题的关键12 (2013?绵阳)已知整数k5,若 ABC的边长均满足关于x 的方程 x23x+8=0,则 ABC的周长是6 或 12 或 10 【考点】AA :根的判别式; A8:解一元二次方程因式分解法;K6:三角形三边关系【专题】 11 :计算题; 16 :压轴题【分析】根据题意得 k0 且(3)2480,而整数 k5,则 k=4,方程变形为 x26x+8=0,解得 x1=2,x2=4,由于 ABC的边长均满足关于x 的方程 x26x+8=0,所以 ABC的边长可以为 2、2、2 或 4、4、4 或 4、4、2,然后分别计算三角形周长【解答】 解:根据题意得 k0 且(3)2480,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料解得 k,整数 k5,k=4,方程变形为 x26x+8=0,解得 x1=2,x2=4,ABC 的边长均满足关于x 的方程 x26x+8=0,ABC 的边长为 2、2、2 或 4、4、4 或 4、4、2ABC 的周长为 6 或 12 或 10故答案为: 6 或 12或 10 【点评】本题考查了一元二次方程ax2+bx+c=0 (a0)的根的判别式 =b24ac:当 0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了因式分解法解一元二次方程以及三角形三边的关系13 (2012?金牛区三模)已知实数x 满足,则= 3 【考点】 A9:换元法解一元二次方程【专题】 16 :压轴题【分析】 先设=y,代入后化为整式方程求解,即可求出答案【解答】 解:设=y,则原方程可变形为y2y=6,解得 y1=2,y2=3,当 y1=2 时,=2,x2+2x+2=0,=b24ac0此方程无解,当 y2=3时,=3,x23x+2=0,=b24ac0此方程有解,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 12 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料=3;故答案为: 3【点评】此题考查了用换元法解分式方程,是常用方法之一, 它能够使方程化繁为简,化难为易, 因此对能用此方法解的分式方程的特点应该加以注意,并要能够熟练变形整理14 (2011春?桐城市月考)方程x2|x| 1=0的根是或【考点】 A7:解一元二次方程公式法【专题】 16 :压轴题; 32 :分类讨论【分析】 分 x0 和 x0 两种情况进行讨论,当x0 时,方程 x2x1=0;当x0 时,方程 x2+x1=0;分别求符合条件的解即可【解答】 解:当 x0 时,方程 x2x1=0;x=;当 x0 时,方程 x2+x1=0;x=,x=;故答案为或【点评】本题考查了一元二次方程的解法公式法,要特别注意分类讨论思想的运用15 (2004?宁波)已知: a0,化简= 2 【考点】 73:二次根式的性质与化简【专题】 16 :压轴题【分析】 根据二次根式的性质化简【 解 答 】 解 : 原 式 =名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 13 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料又二次根式内的数为非负数a=0a=1或1a0a=1原式 =02=2【点评】 解决本题的关键是根据二次根式内的数为非负数得到a 的值16 (2013?庄浪县校级模拟)观察下列二 次根式的化简:, 从计算结果中找到规律,再利用这一规律计算下列式子的值= 2009 【考点】 76:分母有理化【专题】 16 :压轴题; 2A :规律型【分析】先将第一个括号内的各项分母有理化,此时发现, 除第二项和倒数第二项外,其他各项的和为0,由此可计算出第一个括号的值,然后再计算和第二个括号的乘积【解答】 解:原式 =(1+ +) (+1)=(1) (+1)=2009【点评】本题考查的是二次根式的分母有理化以及二次根式的加减运算能够发现式子的规律是解答此题的关键三解答题(共3 小题)17 (2017春?武侯区校级月考)如果不等式组的解集是 1x2,求:坐标原点到直线y=ax+b 距离名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 14 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料【考点】 FD :一次函数与一元一次不等式【分析】根据不等式组的解集是 1x2,得到关于 a,b 的二元一次方程组,解方程组得到 a,b 的值,再根据互相垂直的两条直线的关系可得经过原点并且与直线y=ax+b 垂直的直线解析式,联立两直线解析式可得交点坐标,再根据勾股定理即可求解【解答】 解:,解得 x2a+b+4,解得 x,不等式组的解集是 1x2,2a+b+4=1 ,解得 x,解得,直线 y=ax+b 的解析式为 y=x1,经过原点并且与直线y=ax+b 垂直的直线解析式为y=x,联立两解析式,解得,由勾股定理可得坐标原点到直线y=ax+b 距离为=【点评】考查了一次函数与一元一次不等式,互相垂直的两条直线的关系,勾股定理,方程思想,解题的关键是得到a,b 的值名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 15 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料18 (2013?甘肃模拟)用配方法解方程:x2+x2=0【考点】 A6:解一元二次方程配方法【专题】 16 :压轴题【分析】先把常数项 2 移项后,再在方程的左右两边同时加上一次项系数1 的一半的平方,然后配方,再进行计算即可【解答】 解:配方,得 x2+x=2+,即=,所以 x+=或 x+=解得 x1=1,x2=2【点评】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1; (3)等式两边同时加上一次项系数一半的平方 选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2 的倍数19 (2012?常德模拟)已知方程x2+(m 1)x+m 10=0的一个根是 3,求 m的值及方程的另一个根【考点】 A5:解一元二次方程直接开平方法;A3:一元二次方程的解【专题】 11 :计算题; 16 :压轴题【分析】一元二次方程的根就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立; 将x=3代入原方程即可求得m及另一根的值【解答】 解:方程 x2+(m 1)x+m 10=0的一个根是 3,方程 9+3(m 1)+m 10=0,即 4m 4=0,解得 m=1 ;有方程 x29=0,解得 x=3,所以另一根为 3【点评】 本题考查的是一元二次方程的根的定义名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 16 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 17 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料考点卡片1非负数的性质:偶次方偶次方具有非负性任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0 时,则其中的每一项都必须等于02二次根式的性质与化简(1)二次根式的基本性质: a0; a 0(双重非负性)(a)2=a (a0)(任何一个非负数都可以写成一个数的平方的形式)a2=a(a0) (算术平方根的意义)(2)二次根式的化简:利用二次根式的基本性质进行化简;利用积的算术平方根的性质和商的算术平方根的性质进行化简ab=a?b ab=ab(3)化简二次根式的步骤:把被开方数分解因式;利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2【规律方法】二次根式的化简求值的常见题型及方法1常见题型:与分式的化简求值相结合2解题方法:(1)化简分式:按照分式的运算法则,将所给的分式进行化简(2)代入求值:将含有二次根式的值代入,求出结果(3)检验结果:所得结果为最简二次根式或整式3分母有理化(1)分母有理化是指把分母中的根号化去分母有理化常常是乘二次根式本身 (分母只有一项)或与原分母组成平方差公式例如: 1a=aa?a=aa;1a+b=ab(a+b) (ab)=abab(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 18 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料数式成互为有理化因式一个二次根式的有理化因式不止一个例如:23 的有理化因式可以是2+3,也可以是 a(2+3) ,这里的 a 可以是任意有理数4二次根式的化简求值二次根式的化简求值,一定要先化简再代入求值二次根式运算的最后, 注意结果要化到最简二次根式, 二次根式的乘除运算要与加减运算区分,避免互相干扰5一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根(2)一元二次方程一定有两个解,但不一定有两个实数解这x1,x2是一元二次方程 ax 2+bx+c=0(a0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量ax12+bx1+c=0(a0) ,ax22+bx2+c=0(a0) 6解一元二次方程 - 直接开平方法形如 x2=p 或(nx+m )2=p(p0)的一元二次方程可采用直接开平方的方法解一元二次方程如果方程化成 x2=p的形式,那么可得x=;如果方程能化成( nx+m )2=p(p0)的形式,那么nx+m= 注意:等号左边是一个数的平方的形式而等号右边是一个非负数降次的实质是由一个二次方程转化为两个一元一次方程方法是根据平方根的意义开平方名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 19 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料7解一元二次方程 - 配方法(1)将一元二次方程配成(x+m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法(2)用配方法解一元二次方程的步骤:把原方程化为 ax2+bx+c=0(a0)的形式;方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;方程两边同时加上一次项系数一半的平方;把左边配成一个完全平方式,右边化为一个常数;如果右边是非负数, 就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解8解一元二次方程 - 公式法(1)把 x=bb24ac2a(b24ac0)叫做一元二次方程ax2+bx+c=0 (a0)的求根公式(2)用求根公式解一元二次方程的方法是公式法(3)用公式法解一元二次方程的一般步骤为:把方程化成一般形式,进而确定a,b,c 的值(注意符号);求出 b24ac 的值(若 b24ac0,方程无实数根);在 b24ac0 的前提下,把 a、b、c 的值代入公式进行计算求出方程的根注意:用公式法解一元二次方程的前提条件有两个:a0;b24ac09解一元二次方程 - 因式分解法(1)因式分解法解一元二次方程的意义因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用, 是解一元二次方程最常用的方法因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次, 把解一元二次方程转化为解一元一次方程的问题了(数学转化思想) 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 20 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料(2)因式分解法解一元二次方程的一般步骤:移项,使方程的右边化为零; 将方程的左边分解为两个一次因式的乘积;令每个因式分别为零, 得到两个一元一次方程; 解这两个一元一次方程, 它们的解就都是原方程的解10换元法解一元二次方程1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法换元的实质是转化, 关键是构造元和设元, 理论依据是等量代换, 目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的11根的判别式利用一元二次方程根的判别式(=b24ac)判断方程的根的情况一元二次方程 ax2+bx+c=0(a0)的根与 =b24ac 有如下关系:当 0 时,方程有两个不相等的两个实数根;当 =0时,方程有两个相等的两个实数根;当 0 时,方程无实数根上面的结论反过来也成立12根与系数的关系(1) 若二次项系数为1, 常用以下关系: x1, x2是方程 x2+px+q=0的两根时,x1+x2=p,x1x2=q,反过来可得p=(x1+x2) ,q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数(2)若二次项系数不为1,则常用以下关系: x1,x2是一元二次方程 ax2+bx+c=0(a0)的两根时, x1+x2=,x1x2=,反过来也成立, 即=(x1+x2) , =x1x2名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 21 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料(3)常用根与系数的关系解决以下问题:不解方程, 判断两个数是不是一元二次方程的两个根已知方程及方程的一个根,求另一个根及未知数不解方程求关于根的式子的值,如求,x12+x22等等判断两根的符号求作新方程由给出的两根满足的条件,确定字母的取值这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a0, 0 这两个前提条件13配方法的应用1、用配方法解一元二次方程配方法的理论依据是公式a22ab+b2=(ab)2配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方2、利用配方法求二次三项式是一个完全平方式时所含字母系数的值关键是:二次三项式是完全平方式,则常数项是一次项系数一半的平方3、配方法的综合应用14高次方程(1)高次方程的定义:整式方程未知数次数最高项次数高于2 次的方程,称为高次方程(2)高次方程的解法思想:通过适当的方法, 把高次方程化为次数较低的方程求解所以解高次方程一般要降次,即把它转化成二次方程或一次方程也有的通过因式分解来解对于 5 次及以上的一元高次方程没有通用的代数解法和求根公式(即通过各项系数经过有限次四则运算和乘方和开方运算无法求解),这称为阿贝尔定理换句话说,只有三次和四次的高次方程可用根式求解15一次函数的性质一次函数的性质:k0,y 随 x 的增大而增大,函数从左到右上升;k0,y 随 x 的增大而减小,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 22 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料函数从左到右下降由于 y=kx+b 与 y 轴交于(0,b) ,当 b0 时, (0,b)在 y 轴的正半轴上,直线与 y 轴交于正半轴;当 b0 时, (0,b)在 y 轴的负半轴,直线与y 轴交于负半轴16一次函数图象与系数的关系由于 y=kx+b 与 y 轴交于(0,b) ,当 b0 时, (0,b)在 y 轴的正半轴上,直线与 y 轴交于正半轴;当 b0 时, (0,b)在 y 轴的负半轴,直线与y 轴交于负半轴k0,b0? y=kx+b 的图象在一、二、三象限;k0,b0? y=kx+b 的图象在一、三、四象限;k0,b0? y=kx+b 的图象在一、二、四象限;k0,b0? y=kx+b 的图象在二、三、四象限17一次函数图象上点的坐标特征一次函数 y=kx+b, (k0,且 k,b 为常数)的图象是一条直线它与x 轴的交点坐标是(,0) ;与 y 轴的交点坐标是( 0,b) 直线上任意一点的坐标都满足函数关系式y=kx+b18一次函数图象与几何变换直线 y=kx+b, (k0,且 k,b 为常数)关于 x 轴对称,就是 x 不变, y 变成 y:y=kx+b,即 y=kxb;(关于 X轴对称,横坐标不变,纵坐标是原来的相反数)关于 y 轴对称,就是 y 不变, x 变成 x:y=k(x)+b,即 y=kx+b;(关于 y 轴对称,纵坐标不变,横坐标是原来的相反数)关于原点对称,就是x 和 y 都变成相反数: y=k(x)+b,即 y=kxb(关于原点轴对称,横、纵坐标都变为原来的相反数)19一次函数与一元一次不等式名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 23 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料(1)一次函数与一元一次不等式的关系从函数的角度看, 就是寻求使一次函数y=kx+b 的值大于(或小于) 0 的自变量 x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在 x 轴上(或下)方部分所有的点的横坐标所构成的集合(2)用画函数图象的方法解不等式kx+b0(或0)对应一次函数 y=kx+b,它与 x 轴交点为(,0) 当 k0 时,不等式 kx+b0 的解为: x,不等式 kx+b0 的解为: x;当 k0,不等式 kx+b0 的解为: x,不等式 kx+b0 的解为: x20两条直线相交或平行问题直线 y=kx+b, (k0,且 k,b 为常数) ,当 k 相同,且 b 不相等,图象平行;当k 不同,且 b 相等,图象相交;当k,b 都相同时,两条线段重合(1)两条直线的交点问题两条直线的交点坐标, 就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解(2)两条直线的平行问题若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同例如:若直线 y1=k1x+b1与直线 y2=k2x+b2平行,那么 k1=k221垂线段最短(1)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段(2)垂线段的性质:垂线段最短正确理解此性质, 垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短它是相对于这点与直线上其他各点的连线而言名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 24 页,共 25 页 - - - - - - - - - 学习资料收集于网络,仅供参考学习资料(3)实际问题中涉及线路最短问题时,其理论依据应从“ 两点之间

    注意事项

    本文(2022年初中数学难题 .pdf)为本站会员(Che****ry)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开