欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    关于高中数学说课稿范文8篇.docx

    • 资源ID:34381659       资源大小:31.57KB        全文页数:21页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    关于高中数学说课稿范文8篇.docx

    关于高中数学说课稿范文8篇关于高中数学说课稿范文8篇 作为一名教职工,总不可避免地需要编写说课稿,编写说课稿是提高业务素质的有效途径。说课稿应该怎么写才好呢?下面是小编为大家整理的高中数学说课稿8篇,仅供参考,欢迎大家阅读。 高中数学说课稿篇1 1、对教材地位与作用的认识 在高中数学教学中,作为数学思想应向学生渗透,强化的有:函数与方程思想;数形结合思想;分类讨论思想;等价转化及运动变化思想。不是所有的课都能把这些思想自然的容纳进去,但由于“曲线和方程”这一节在教材中的特殊地位,它把代数和几何两个单科自然而紧密地结合在一起,因而上述思想能用到大半,这不能不引起我们教师的重视。“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“依形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,用代数的方法研究几何问题。”曲线与方程”是解析几何中最为重要的基本内容之一.在理论上它是基础,在应用上它是工具,对全部解析几何的教学有着深远的影响,另外在高考中也是考察的重点内容,尤其是求曲线的方程,学生只有透彻理解了曲线与方程的含义,才算是找到了解析几何学习得入门之路。应该认识到这节“曲线和方程”得开头课是解析几何教学的“重头戏”! 2、教学目标的确定及依据 (大纲的要求)通过本小节的学习,要使学生了解解析几何的基本思想,了解用坐标法研究几何问题的初步知识和观点,理解曲线的方程和方程的曲线的意义,初步掌握求曲线的方程的方法.所以第一课我在教学目标上是这样设定的: 1).了解曲线上的点与方程的解之间的一一对应关系,领会“曲线的方程”与“方程的曲线”的概念及其关系,并能作简单的判断与推理; 2).在形成概念的过程中,培养分析、抽象和概括等思维能力; 3)会证明已知曲线的方程。 本节课的教学目标定在“初步掌握”的水平上,但“初步”绝不等同于“含糊”,它反应在学生的学习行为上,即要求学生能答出曲线与方程间必须满足的两个关系,才能称作“方程的曲线”和“曲线的方程”,两者缺一不可,并能借助实例进一步明确这二者的区别。知识的学习与能力的培养是同步的,在具体操作上结合图形分析与反例,来辨析“两个关系”之间的区别,从认识特例到归纳出曲线的方程和方程的曲线一般概念,因而在形成概念的过程中,培养学生分析、抽象、概括的思维能力.会证明已知曲线的方程就能更进一步的理解曲线和方程概念的含义并为下节课求曲线的方程打基础. 3、如何突破重难点 本小节的重点是理解曲线与方程的有关概念与相互联系,以及求曲线方程的方法、步骤.只有深刻理解了曲线与方程的含义,才能真正掌握好求曲线轨迹方程的一般方法,进一步学好后面的内容.曲线和方程的概念比较抽象,由直观表象到抽象概念有相当难度,对学生理解上可能遇到的问题是学生不理解“曲线上的点的坐标都是方程的解”和”“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系各自所起的作用。有的学生只从字面上死记硬背;有的学生甚至误以为这两句话是同义反复。要突破这一点,关键在于利用充要条件,函数图象,直线和方程,轨迹等知.识,正反两方面说明问题. 本节课的难点在于对定义中为什么要规定两个关系(纯粹性和完备性)产生困惑,原因是不理解两者缺任何一个都将扩大概念的外延。 4、对教学过程的设计 今天要讲的“曲线和方程”这部分教材的内容主要包括“曲线方程的概念”,“已知曲线求它的方程”、“已知方程作出它的曲线”等。在课时安排上分为3个课时进行教学,具体的课时分配是:第一课时讲解“曲线与方程”和“方程与曲线”的概念及其关系;第二课时讲解求曲线的方程一般方法,第三课时为习题课,通过练习来总结、巩固和深化本节知识。如果以为学生不真正领悟曲线和方程得关系照样能求出方程,照样能计算某些难题,因而可以忽视这个基本概念得教学,这不能不说是一种“舍本逐末”得偏见。 在教材中,曲线和方程这一概念是随着知识的讲授而不断深化,逐步为学生所理解,因而教材中从直线开始,多次,重复地阐述,这说明其重要性.同时也说明理解它,掌握它确实需要一个过程.数学本身是很抽象,把数学和实际问题相结合才能激发学生的学习兴趣,真正达到素质教育的要求。根据以上考虑,确定了这节课教学过程的基本线索是:实际问题引入,提出课题运用反例,揭示内涵讨论归纳,得出定义集合表述,强化理解知识应用,反复辨析。 教材的编写也往往体现着教法.,例如,本节一开头说“我们研究过直线的各种方程,讨论了直线和二元一次方程的关系。”学生已经有了用方程(有时用函数式的形式出现)表示曲线的感性认识,在本节教学中充分发挥这些感性认识的作用。从人造地球卫星运行的轨道等生动形象的实际问题引入,引起学生的兴趣和好奇心以及对数学的应用有了更高的认识,更激发他们进一步学好数学的决心。(具体)提出课题。运用学生熟知的知识,1)求线段AB的垂直平分线方程和2)作出方程y=x2的图象作为引例,从曲线到方程,从方程到曲线两方面入手分析了曲线上的点和方程的解之间的关系,为形成曲线和方程的概念提供了实际模型,但是如果就此而由教师直接给出结论,那就不仅会失去开发学生思维的机会,影响学生的理解,而且会使教学变得枯燥乏味,抑制了学生学习的主动性和积极性,接着用反例来突破难点。通过反例1)直线去掉第三象限部分,则方程y=x的解为坐标的点不都在曲线上,以及2)改方程为,那么曲线上就混有不满足方程的点坐标就此揭示“两者缺一”与直觉的矛盾,通过举反例和步步追问使我要的答案逐步明了,从而又促使学生对概念表述的严格性进行探索,学生自已认识曲线和方程的概念必须要具备的两个关系,培养学生分析,归纳问题的能力,自然得出定义。并且把这个关系板书到黑板上,以示这就是这节课的重点。为了在重难点有所突破后强化其认识,又用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。 然后通过运用与练习,纠正错误的认识,促使对概念的正确理解,通过反复重现,可以不断领悟,加强识记。所以安排了例1,例2(见课件)目的也在于帮助学生正确理解概念,通过解题辨析“两个关系”,实现本节课的教学目标,为此题目中的“曲线”和“方程”都力求简单,由此得出点在曲线上的充要条件。 曲线是符合某种条件的点的轨迹,为了下节课“求曲线的方程”的教学,安排了例3(见课件)证明曲线的方程,增加学生的感性认识,由于教材上有严谨的证明过程,让学生阅读并总结证明已知曲线的方程的方法和步骤,上升到理论上,可以培养学生独立思考,阅读归纳的能力。为了让学生更深入的理解这节课的主要内容,通过4个变式引申检查他们的掌握程度,但难度不能太大,我选择这样几个练习:(略)简单评讲后小结本课的主要内容,进一步强化“曲线和方程”概念中两个关系缺一不可,只有符合关系1)2)才能进行数与形的转化。由于下节课的内容是求曲线的方程,特地安排了一个思考探索题。 5、对学生学习活动的引导和组织 教案的设计与教案的实施往往有一定的距离,本节课有着概念性强,思维量大,例题与练习题不多的特点,这就决定了整节课将以学生的观察、思考、讨论为主,通过提问,举例,启发,互动完成教学,在具体操作上比较灵活,视学生的具体情况而定,把握学生的思维规律于数学思想的基本方法。例如,在概念教学中引导学生看反例,通过正反对比的方法,当学生观察了例1回答不清为什么,可以举出几个点的坐标作检验,这就是”从特殊到一般“的方法:或引导学生看图,比比划划,这就是“从直观到抽象”的方法。只要启发方法符合学生的认识规律,学生的认识活动就会顺利展开,而且在认知的过程中训练了探索的能力。强化数形结合、化归与转化的数学思想方法,完善学生的数学的结构,让学生动手、动脑,以及观察、联想、猜测、归纳等合理推理,鼓励学生多向思维、积极思考,勇于探索,从中培养学生合情推理能力,数学交流与合作能力以及主动参与的精神。 高中数学说课稿篇2 一、教学目标 (一)知识与技能 1、进一步熟练掌握求动点轨迹方程的基本方法。 2、体会数学实验的直观性、有效性,提高几何画板的操作能力。 (二)过程与方法 1、培养学生观察能力、抽象概括能力及创新能力。 2、体会感性到理性、形象到抽象的思维过程。 3、强化类比、联想的方法,领会方程、数形结合等思想。 (三)情感态度价值观 1、感受动点轨迹的动态美、和谐美、对称美 2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气 二、教学重点与难点 教学重点:运用类比、联想的方法探究不同条件下的轨迹 教学难点:图形、文字、符号三种语言之间的过渡 三、教学方法和手段 观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。 利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。 重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。 高中数学说课稿篇3 尊敬的各位专家、评委: 上午好! 今天我说课的课题是人教A版必修1第二章第二节对数函数。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。 一、教材分析 地位和作用 本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用。“对数函数”这节教材,是在没有学习反函数的基础上研究的指数函数和对数函数的自变量和因变量之间的关系。同时对数函数作为常用数学模型在解决社会生活中的实例有着广泛的应用,本节课的学习为学生进一步学习,参加生产和实际生活提供必要的基础知识。 二、目标分析 (一)、教学目标 根据对数函数在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下的教学目标: 1、知识与技能 (1)、进一步体会函数是描述变量之间的依赖关系的重要数学模型; (2)、理解对数函数的概念、掌握对数函数的图像和性质; (3)、由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。 2、过程与方法 引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构对数函数的概念;体验结合旧知识探索新知识,研究新问题的快乐。 3、情感态度与价值观 通过对对数函数函数图像和性质的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。在民主、和谐的教学气氛中,促进师生的情感交流。 (二)教学重点、难点及关键 1、重点:对数函数的概念、图像和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。 2、难点:底数a对对数函数的图像和性质的影响。 关键对数函数与指数函数的类比教学。 由指数函数的图像过渡到对数函数的图像,通过类比分析达到深刻地了解对数函数的图像及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图像,数形结合,加强直观教学,使学生能形成以图像为根本,以性质为主体的知识网络,同时在立体的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突破重点、突破难点。 三、教法、学法分析 (一)、教法 教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法: 1、启发引导学生思考、分析、实验、探索、归纳; 2、采用“从特殊到一般”、“从具体到抽象”的方法; 3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法; 4、投影仪演示法。 在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。 (二)、学法 教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导: 1、对照比较学习法:学习对数函数,处处与指数函数相对照; 2、探究式学习法:学生通过分析、探索,得出对数函数的定义; 3、自主性学习法:通过实验画出函数图像、观察图像自得其性质; 4、反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。 四、教学过程分析 (一)、教学过程设计 1、创设情境,提出问题。 在某细胞分裂过程中,细胞个数y是分裂次数x的函数y=2x,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。 问题一:这是一个怎样的函数模型类型呢? 设计意图 复习指数函数 问题二:现在我们来研究相反的问题,如果知道了细胞的个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图 为了引出对数函数 问题三:在关系式x=log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢? 设计意图 (1)、为了让学生更好地理解函数; (2)、为了让学生更好地理解对数函数的概念。 2、引导探究,建构概念。 (1)、对数函数的概念: 同样,在前面提到的发射性物质,经过的时间x年与物质剩余量y的关系式为y=0.84x,我们也可以把它改成对数式x=log0.84y,其中x年夜可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的。 设计意图 前面的问题情景的底数为2,而这个问题情景的底数是0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。 但是在习惯上,我们用x表示自变量,用y表示函数值。 问题一:你能把以上两个函数表示出来吗? 问题二:你能得到此类函数的一般式吗? 设计意图 体现出了由特殊到一般的数学思想 问题三:在y=logax中,a有什么限制条件吗?请结合指数式给以解释。 问题四:你能根据指数函数的.定义给出对数函数的定义吗? 问题五:x=logay与y=ax中的x,y的相同之处是什么?不同之处是什么? 设计意图 前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略或最不容易理解的是函数的定义域,所以设计这个问题是为了让学生更好地理解对数函数的定义域。 (2)、对数函数的图像与性质 问题:有了研究指数函数的经历,你觉得下面该学习什么内容了? 设计意图 提示学生进行类比学习 合作探究1:借助计算器在同一直角坐标系中画出下列两组函数的图像,并观察各族函数图像,探求他们之间的关系。 y=2x;y=log2xy=()x,y=logx 合作探究2:当a>0,a1,函数y=ax与y=logax图像之间有什么关系? 设计意图 在这儿体现“从特殊到一般”、“从具体到抽象”的方法。 合作探究3:分析你所画的两组函数的图像,对照指数函数的性质,总结归纳对数函数的性质。 设计意图 学生讨论并交流各自的而发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。问题1:对数函数y=logax(a>0,a1,)是否具有奇偶性,为什么? 问题2:对数函数y=logax(a>0,a1,),当a>1时,x取何值,y>0,x取何值,y10,所以10人中必有3人既会英语又会日语。(1)N=5+2+3;(2)N=5×2+5×3+2×3) 只要大家用心学习,认真复习,就有可能在高中的战场上考取自己理想的成绩。 高中数学说课稿篇6 各位评委、各位老师:大家好! 我叫李长杉,来自甘肃省嘉峪关市第一中学。今天我说课的课题是一元二次不等式的解法(第一课时)。下面我将围绕本节课"教什么?"、"怎样教?"以及"为什么这样教?"三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。 一。教材内容分析: 1.本节课内容在整个教材中的地位和作用。 概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。 2.教学目标定位。 根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。 3.教学重点、难点确定。 本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。 二。教法学法分析: 数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织启发引导,学生探究交流发现,组织开展教学活动。我设计了创设情景引入新课,交流探究发现规律,启发引导形成结论,练习小结深化巩固,思维拓展提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。 三。教学过程分析: 1.创设情景引入新课。我们常说"兴趣是最好的老师",长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以20xx年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。 2.探究交流发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。 3.启发引导形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就>0,0或ax2+bx+c0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须将二次项系数化为正数,求解二次方程ax2+bx+c=0的根。根据后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为"三步曲"法)。 4.训练小结巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1-4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。 5.延伸拓宽提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。 四。课堂意外预案: 新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到"意外"的问题,我在平时的教学中重视对"课堂意外预案"的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个"意外预案". 1.学生在做课本练习1(x+2)(x-3)>0时,可能会问到转化为不等式组或求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法等价转化法,不在本节课之列。 2.根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。 以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家! 高中数学说课稿篇7 教学背景分析 1。教材结构分析 圆的方程安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。 2。学情分析 圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。 根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标: 3。教学目标 (1)知识目标:掌握圆的标准方程; 会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程; 利用圆的标准方程解决简单的实际问题。 (2)能力目标:进一步培养学生用代数方法研究几何问题的能力; 加深对数形结合思想的理解和加强对待定系数法的运用; 增强学生用数学的意识。 (3)情感目标:培养学生主动探究知识、合作交流的意识; 在体验数学美的过程中激发学生的学习兴趣。 根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点: 4。教学重点与难点 (1)重点:圆的标准方程的求法及其应用。 (2)难点:会根据不同的已知条件求圆的标准方程; 选择恰当的坐标系解决与圆有关的实际问题。 为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析: 好学教育: 教法学法分析 1。教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。 2。学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。下面我就对具体的教学过程和设计加以说明: 教学过程与设计 整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节: 创设情境启迪思维深入探究获得新知应用举例巩固提高 反馈训练形成方法小结反思拓展引申 下面我从纵横两方面叙述我的教学程序与设计意图。 首先:纵向叙述教学过程 (一)创设情境启迪思维 问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道? 通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。 通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。 (二)深入探究获得新知 问题二1。根据问题一的探究能不能得到圆心在原点,半径为的圆的方程? 2。如果圆心在,半径为时又如何呢? 好学教育: 这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。 得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。 (三)应用举例巩固提高 I。直接应用内化新知 问题三1。写出下列各圆的标准方程: (1)圆心在原点,半径为3; (2)经过点,圆心在点。 2。写出圆的圆心坐标和半径。 我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。 II。灵活应用提升能力 问题四1。求以点为圆心,并且和直线相切的圆的方程。 2。求过点,圆心在直线上且与轴相切的圆的方程。 3。已知圆的方程为,求过圆上一点的切线方程。 你能归纳出具有一般性的结论吗? 已知圆的方程是,经过圆上一点的切线的方程是什么? 我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。 III。实际应用回归自然 问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。 好学教育: 我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。 (四)反馈训练形成方法 问题六1。求过原点和点,且圆心在直线上的圆的标准方程。 2。求圆过点的切线方程。 3。求圆过点的切线方程。 接下来是第四环节反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。 (五)小结反思拓展引申 1。课堂小结 把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法圆心为,半径为r的圆的标准方程为: 圆心在原点时,半径为r的圆的标准方程为:。 已知圆的方程是,经过圆上一点的切线的方程是:。 2。分层作业 (A)巩固型作业:教材P8182:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。 3。激发新疑 问题七1。把圆的标准方程展开后是什么形式? 2。方程表示什么图形? 在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。 以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计 (一)突出重点抓住关键突破难点 好学教育: 求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。 第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。 (二)学生主体教师主导探究主线 本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。 (三)培养思维提升能力激励创新 为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。 以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。 高中数学说课稿篇8 高中数学说课稿模板

    注意事项

    本文(关于高中数学说课稿范文8篇.docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开