多边形及其内角和知识点归纳及同步练习.doc
如有侵权,请联系网站删除,仅供学习与交流多边形及其内角和知识点归纳及同步练习【精品文档】第 3 页 多边形及其内角和知识点知识点一:多边形及有关概念1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. 2、多边形的分类: (1)多边形可分为凸多边形和凹多边形 知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。如正三角形、正方形、正五边形等。知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(1)从n边形一个顶点可以引(n3)条对角线,将多边形分成(n2)个三角形。(2)n边形共有条对角线。知识点四:多边形的内角和公式1.公式:边形的内角和为.知识点五:多边形的外角和公式1.公式:多边形的外角和等于360°. 知识点六:镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)。这里的多边形可以形状相同,也可以形状不相同。2、实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边。 多边形及其内角和练习题一、选择题1.一个多边形的外角中,钝角的个数不可能是( ) A.1个 B.2个 C.3个 D.4个*2.不能作为正多边形的内角的度数的是( ) A.120° B.(128)° C.144° D.145°*3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( ) A.2:1 B.1:1 C.5:2 D.5:44.四边形中,如果有一组对角都是直角,那么另一组对角可能( ) A.都是钝角; B.都是锐角 C.是一个锐角、一个钝角 D.是一个锐角、一个直角5.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( ) A.十三边形 B.十二边形 C.十一边形 D.十边形6.若一个多边形共有十四条对角线,则它是( ) A.六边形 B.七边形 C.八边形 D.九边形7.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( ) A.90° B.105° C.130° D.120°二、填空题:(每小题3分,共15分)1.多边形的内角中,最多有_个直角.2.从n边形的一个顶点出发,最多可以引_条对角线.3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为_.4.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为_.5.每个内角都为144°的多边形为_边形.三、基础训练:1.一个多边形的每一个外角都等于24°,求这个多边形的边数.四、中考题与竞赛题:(共4分) 若一个多边形的内角和等于1080°,则这个多边形的边数是( ) A.9 B.8 C.7 D.61.如果四边形有一个角是直角,另外三个角的度数之比为234,那么这三个内角的度数分别是多少?2.一个多边形的内角和等于1080°,求它的边数.3.一个多边形的每一个外角都等于144°,求它的边数.4.一个正多边形的一个内角比相邻外角大36°,求这个正多边形的边数.5. 已知多边形的内角和等于1440°,求(1)这个多边形的边数,(2)过一个顶点有几条对角线,(3)总对角线条数.6.一个多边形的外角和是内角和的,求这个多边形的边数;