初三圆的知识点总结.doc
如有侵权,请联系网站删除,仅供学习与交流初三圆的知识点总结几何表达式举例: CD过圆心CDAB2.平行线夹弧定理:圆的两条平行弦所夹的弧相等.几何表达式举例:3.“角、弦、弧、距”定理:(同圆或等圆中)“等角对等弦”; “等弦对等角”; “等角对等弧”; “等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1) AOB=COD AB = CD (2) AB = CDAOB=COD4圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)(3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(1) (2)(3) (4)几何表达式举例:(1) ACB=AOB (2) AB是直径 ACB=90°(3) ACB=90° AB是直径(4) CD=AD=BD ABC是Rt 5圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.几何表达式举例: ABCD是圆内接四边形 CDE =ABCC+A =180°6切线的判定与性质定理:如图:有三个元素,“知二可推一”;需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;(3)经过圆心且垂直于切线的直线必经过切点;(4)经过切点且垂直于切线的直线必经过圆心.几何表达式举例:(1) OC是半径OCABAB是切线(2) OC是半径AB是切线OCAB(3) 7切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角.几何表达式举例: PA、PB是切线 PA=PBPO过圆心APO =BPO8弦切角定理及其推论:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(3)弦切角的度数等于它所夹的弧的度数的一半.(如图) 几何表达式举例:(1)BD是切线,BC是弦CBD =CAB(2) ED,BC是切线 CBA =DEF9相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项. 几何表达式举例:(1) PA·PB=PC·PD(2) AB是直径PCABPC2=PA·PB10切割线定理及其推论:(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等. 几何表达式举例:(1) PC是切线,PB是割线PC2=PA·PB(2) PB、PD是割线PA·PB=PC·PD11关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦;(2)如果两圆相切,那么切点一定在连心线上. (1) (2)几何表达式举例:(1) O1,O2是圆心O1O2垂直平分AB(2) 1 、2相切O1 、A、O2三点一线12正多边形的有关计算:(1)中心角an ,半径RN , 边心距rn , 边长an ,内角bn , 边数n;(2)有关计算在RtAOC中进行.公式举例:(1) an =;(2) 2关于圆的常见辅助线:已知弦构造弦心距.已知弦构造Rt.已知直径构造直角.已知切线连半径,出垂直.圆外角转化为圆周角.圆内角转化为圆周角.构造垂径定理.构造相似形.两圆内切,构造外公切线与垂直.两圆内切,构造外公切线与平行.两圆外切,构造内公切线与垂直.两圆外切,构造内公切线与平行.两圆同心,作弦心距,可证得AC=DB. 两圆相交构造公共弦,连结圆心构造中垂线.PA、PB是切线,构造双垂图形和全等.相交弦出相似.一切一割出相似, 并且构造弦切角.两割出相似,并且构造圆周角.双垂出相似,并且构造直角.规则图形折叠出一对全等,一对相似.圆的外切四边形对边和相等.若AD BC都是切线,连结OA、OB可证AOB=180°,即A、O、B三点一线.等腰三角形底边上的的高必过内切圆的圆心 和切点,并构造相似形.RtABC的内切圆半径:r=.补全半圆. AB=.AB=.PC过圆心,PA是切线,构造双垂、Rt.O是圆心,等弧出平行和相似.作ANBC,可证出:.【精品文档】第 5 页1.垂径定理及推论: 如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理” “弧径定理”“中垂定理”.