华师版八年级上册数学 【教案】13.5.2 线段的垂直平分线.doc
13.5.2 线段的垂直平分线【教学目标】知识与技能掌握线段垂直平分线的性质定理和判定定理,能灵活运用线段垂直平分线的性质定理和判定定理解题.过程与方法通过经历线段垂直平分线性质定理与判定定理的证明过程,体验逻辑推理的数学方法.情感、态度与价值观通过认识上的升华,使学生加深对命题证明的认识,使学生发现数学.【重点难点】重点线段垂直平分线的性质定理和判定定理,能灵活运用线段垂直平分线的性质定理和判定定理解题.难点灵活运用线段垂直平分线的性质定理和判定定理解题.【教学过程】一、创设情景,导入新课线段是轴对称图形吗?它的对称轴是什么?如图,l是线段AB的垂直平分线,点C在直线l上,CA与CB有什么关系?写出你的证明过程.二、师生互动,探究新知在学生交流发言基础上,教师板书:线段垂直平分线的性质定理,即线段垂直平分线上的点到线段两端的距离相等.巩固练习材料P96第1、2题.教师提问:你能写出这个性质定理的逆命题吗?它是不是真命题?学生完成并回答.下面我们一起来证明它,见教材P95.教师提问这个命题与线段垂直平分线的性质定理有何关系?学生回答,教师板书.线段垂直平分线的判定定理到线段两端距离相等的点,在线段的垂直平分线上.三、随堂练习,巩固新知1.已知MN是线段AB的垂直平分线,C、D是MN上任意两点,则CAD和CBD之间的关系是()A.CAD<CBDB.CAD=CBDC.CAD>CBDD.无法判断2.如图,在ABC中,已知AB=AC,DE垂直平分AC,分别交AB、AC于D、E,A=50°,是DCB的度数是. 【答案】1.B2.15°四、典例精析,拓展新知如图所示,在RtABC中,ACB=90°,D是AB上一点,BD=BC,过D作AB的垂线交AC于点E,CD交BE于点F.求证:BE垂直平分CD.【答案】BD=BC,点B在CD的垂直平分线上,BCD=BDF.又ACB=90°=BDE,ACB-BCD=BDE-BDC,即ECD=EDC,ED=EC,E在CD的垂直平分线上.根据两点确定一条直线可得:BE垂直平分CD.【教学说明】任意三角形的三边垂直平分线都相交于一点,在后面将学习这一点是三角形的外心,锐角三角形的各边垂直平分线的交点在三角形内,直角三角形各边垂直平分线的交点,在斜边的中点,钝角三角形各边垂直平分线的交点在三角形外;要证明某直线是某线段的垂直平分线,可证明这条直线有两点到线段两端的距离相等.五、运用新知,深化理解如图,在ABC中,DE是AC的垂直平分线,ABC与ABD的周长分别为18cm和12cm,求线段AE的长.【答案】DE是AC的垂直平分线,AD=DC,AE=EC.ABC的周长为AB+AC+BC=18(cm),ABD的周长为AB+AD+BD=12(cm),-,得AC=6cm,AE=AC=3cm.六、师生互动,课堂小结这节课你学习了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.1.引导学生作知识总结:线段垂直平分线的性质、判定定理,三角形三边的垂直平分线交于一点.2.教师扩展:利用两个定理证明线段相等,线段垂直时不用再证明全等,可简化解题过程.【教学反思】本节课在教学过程中,首先提出问题,让学生回答,通过观察、发现、论证得出线段的垂直平分线的性质定理,接着写出性质定理的逆命题.教师与学生一起证明这个定理,并在习题中运用这两个定理,得出三角形各边的垂直平分线相交于同一点的重要结论.在教学过程中,应注意让学生搞清两个定理的条件与结论,并充分调动学生的积极性,体会解决问题成功的乐趣.