2019-2020学年高中数学第2章数列2.2.3等差数列的前n项和1教案苏教版必修.doc
-
资源ID:34462860
资源大小:29KB
全文页数:2页
- 资源格式: DOC
下载积分:6金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2019-2020学年高中数学第2章数列2.2.3等差数列的前n项和1教案苏教版必修.doc
2019-2020学年高中数学第2章数列2.2.3等差数列的前n项和1教案苏教版必修教学目标:要求学生掌握等差数列的求和公式以及推导该公式的数学思想方法,并能运用公式解决简单的问题教学重点:掌握等差数列的求和公式教学难点:推导该公式的数学思想方法教学方法:启发、讨论、引导式教学过程:一、问题情境高斯计算从1一直加到100的和,这里的算法非常高明,回忆他是怎样算的(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,每组数的和均相等,都等于101,50个101就等于5050了高斯算法将加法问题转化为乘法运算,迅速准确得到了结果我们希望求一般的等差数列的和,高斯算法对我们有何启发?二、学生活动由学生讨论,研究高斯算法对一般等差数列求和的指导意义 提问:你能说出高斯解题的思想方法是什么吗?三、建构数学等差数列的前n项和公式;四、数学运用1例题例1已知等差数列an中,a150,a815,求S8例2已知等差数列an中,a130.7,a31.5,求S72练习(2)在等差数列an中,若a2a5a12a1536求S16已知a620求S11(3)求1000以内能被7整除的所有自然数之和(4)南北朝张秋建算经:今有女子善织布,逐日所织布以同数递增,初日织五尺,计织三十日,共织九匹三丈,问日增几何?(一匹为四丈)五、要点归纳与方法小结本节课学习了以下内容:1运用从特殊到一般的方法得到了等差数列前n项和公式;2探究过程中得到了一种重要的求和方法:倒序相加法