七年级上册数学一元一次方程计算和应用题练习.doc
-
资源ID:34475183
资源大小:54.47KB
全文页数:4页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
七年级上册数学一元一次方程计算和应用题练习.doc
七年级数学解一元一次方程练习题及答案 (1) (2)(3) (4)(5)(6)(7)(8) 5x+2=7x-8; (9)(10) (11) (12) (13) (14) (15)(16)2(2x-1)-4(4x-1)-5(2x+1)-19=0(17)234(5x-1)-8-20-7=1(18) 2(0.3x-4)-5(0.2x+3)=9(19) 2(x+3)-2(x+1)-5=0应用题知能点1:市场经济、打折销售问题(1)商品利润商品售价商品成本价 (2)商品利润率×100%(3)商品销售额商品销售价×商品销售量(4)商品的销售利润(销售价成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元? 2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?知能点2: 方案选择问题1某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是: 如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案: 方案一:将蔬菜全部进行粗加工 方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,在市场上直接销售 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成你认为哪种方案获利最多?为什么?2某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话)若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元 (1)写出y1,y2与x之间的函数关系式(即等式) (2)一个月内通话多少分钟,两种通话方式的费用相同? (3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?知能点3储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税(2)利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)(3)1. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)知能点4:工程问题 工作量工作效率×工作时间 工作效率工作量÷工作时间 工作时间工作量÷工作效率 完成某项任务的各工作量的和总工作量1 1. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 2. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池? 知能点5:若干应用问题等量关系的规律 (1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。 增长量原有量×增长率 现在量原有量增长量 (2)等积变形问题 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变 圆柱体的体积公式 V=底面积×高S·hr2h长方体的体积 V长×宽×高abc1.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的。问每个仓库各有多少粮食?2.一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,3.14)知能点6:行程问题 基本量之间的关系: 路程速度×时间 时间路程÷速度 速度路程÷时间 (1)相遇问题 (2)追及问题 快行距慢行距原距 快行距慢行距原距 (3)航行问题 顺水(风)速度静水(风)速度水流(风)速度 逆水(风)速度静水(风)速度水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系1. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里? (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。