欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    小学数学知识点最全总结.doc

    • 资源ID:34631221       资源大小:84KB        全文页数:28页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    小学数学知识点最全总结.doc

    如有侵权,请联系网站删除,仅供学习与交流小学数学知识点最全总结【精品文档】第 28 页小学数学知识点最全总结,必须收藏起来!1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。【数量关系】总量÷份数1份数量1份数量×所占份数所求几份的数量另一总量÷(总量÷份数)所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷50.12(元)(2)买16支铅笔需要多少钱?0.12×161.92(元)列成综合算式0.6÷5×160.12×161.92(元)答:需要1.92元。例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷310(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6300(公顷)列成综合算式90÷3÷3×5×610×30300(公顷)答:5台拖拉机6天耕地300公顷。例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷45(吨)(2)7辆汽车1次能运多少吨钢材?5×735(吨)(3)105吨钢材7辆汽车需要运几次?105÷353(次)列成综合算式105÷(100÷5÷4×7)3(次)答:需要运3次。2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。【数量关系】1份数量×份数总量总量÷1份数量份数总量÷另一份数另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2×7912531.2(米)(2)现在可以做多少套?2531.2÷2.8904(套)列成综合算式3.2×791÷2.8904(套)答:现在可以做904套。例2小华每天读24页书,12天读完了红岩一书。小明每天读36页书,几天可以读完红岩?解(1)红岩这本书总共多少页?24×12288(页)(2)小明几天可以读完红岩?288÷368(天)列成综合算式24×12÷368(天)答:小明8天可以读完红岩。例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克?50×301500(千克)(2)这批蔬菜可以吃多少天?1500÷(5010)25(天)列成综合算式50×30÷(5010)1500÷6025(天)答:这批蔬菜可以吃25天。3、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。【数量关系】大数(和差)÷2小数(和差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数(986)÷252(人)乙班人数(986)÷246(人)答:甲班有52人,乙班有46人。例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。解长(182)÷210(厘米)宽(182)÷28(厘米)长方形的面积10×880(平方厘米)答:长方形的面积为80平方厘米。例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(3230)2千克,且甲是大数,丙是小数。由此可知甲袋化肥重量(222)÷212(千克)丙袋化肥重量(222)÷210(千克)乙袋化肥重量321220(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×23),甲与乙的和是97,因此甲车筐数(9714×23)÷264(筐)乙车筐数976433(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。4、和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。【数量关系】总和÷(几倍1)较小的数总和较小的数较大的数较小的数×几倍较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵?248÷(31)62(棵)(2)桃树有多少棵?62×3186(棵)答:杏树有62棵,桃树有186棵。例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?解(1)西库存粮数480÷(1.41)200(吨)(2)东库存粮数480200280(吨)答:东库存粮280吨,西库存粮200吨。例3甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(2824)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(5232)就相当于(21)倍,那么,几天以后甲站的车辆数减少为(5232)÷(21)28(辆)所求天数为(5228)÷(2824)6(天)答:6天以后乙站车辆数是甲站的2倍。例4甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?解乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时(17046)就相当于(123)倍。那么,甲数(17046)÷(123)28乙数28×2452丙数28×3690答:甲数是28,乙数是52,丙数是90。5、差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。【数量关系】两个数的差÷(几倍1)较小的数较小的数×几倍较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。例1果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?解(1)杏树有多少棵?124÷(31)62(棵)(2)桃树有多少棵?62×3186(棵)答:果园里杏树是62棵,桃树是186棵。例2爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解(1)儿子年龄27÷(41)9(岁)(2)爸爸年龄9×436(岁)答:父子二人今年的年龄分别是36岁和9岁。例3商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解如果把上月盈利作为1倍量,则(3012)万元就相当于上月盈利的(21)倍,因此上月盈利(3012)÷(21)18(万元)本月盈利183048(万元)答:上月盈利是18万元,本月盈利是48万元。例4粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(13894)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(13894)就相当于(31)倍,因此剩下的小麦数量(13894)÷(31)22(吨)运出的小麦数量942272(吨)运粮的天数72÷98(天)答:8天以后剩下的玉米是小麦的3倍。6、倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。【数量关系】总量÷一个数量倍数另一个数量×倍数另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。例1100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解(1)3700千克是100千克的多少倍?3700÷10037(倍)(2)可以榨油多少千克?40×371480(千克)列成综合算式40×(3700÷100)1480(千克)答:可以榨油1480千克。例2今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?解(1)48000名是300名的多少倍?48000÷300160(倍)(2)共植树多少棵?400×16064000(棵)列成综合算式400×(48000÷300)64000(棵)答:全县48000名师生共植树64000棵。例3凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?解(1)800亩是4亩的几倍?800÷4200(倍)(2)800亩收入多少元?11111×2002222200(元)(3)16000亩是800亩的几倍?16000÷80020(倍)(4)16000亩收入多少元?2222200×2044444000(元)答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。7、相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。【数量关系】相遇时间总路程÷(甲速乙速)总路程(甲速乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(2821)8(小时)答:经过8小时两船相遇。例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈。因此总路程为400×2相遇时间(400×2)÷(53)100(秒)答:二人从出发到第二次相遇需100秒时间。例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。解“两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间(3×2)÷(1513)3(小时)两地距离(1513)×384(千米)答:两地距离是84千米。8、追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。【数量关系】追及时间追及路程÷(快速慢速)追及路程(快速慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米?75×12900(千米)(2)好马几天追上劣马?900÷(12075)20(天)列成综合算式75×12÷(12075)900÷4520(天)答:好马20天能追上劣马。例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用40×(500÷200)秒,所以小亮的速度是(500200)÷40×(500÷200)300÷1003(米)答:小亮的速度是每秒3米。例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解敌人逃跑时间与解放军追击时间的时差是(2216)小时,这段时间敌人逃跑的路程是10×(226)千米,甲乙两地相距60千米。由此推知追及时间10×(226)60÷(3010)220÷2011(小时)答:解放军在11小时后可以追上敌人。例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。解这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(4840)4(小时)所以两站间的距离为(4840)×4352(千米)列成综合算式(4840)×16×2÷(4840)88×4352(千米)答:甲乙两站的距离是352千米。9、植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。【数量关系】线形植树棵数距离÷棵距1环形植树棵数距离÷棵距方形植树棵数距离÷棵距4三角形植树棵数距离÷棵距3面积植树棵数面积÷(棵距×行距)【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。例1一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解136÷2168169(棵)答:一共要栽69棵垂柳。例2一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解400÷4100(棵)答:一共能栽100棵白杨树。例3一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?解220×4÷841104106(个)答:一共可以安装106个照明灯。例4给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?解96÷(0.6×0.4)96÷0.24400(块)答:至少需要400块地板砖。例5一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?解(1)桥的一边有多少个电杆?500÷50111(个)(2)桥的两边有多少个电杆?11×222(个)(3)大桥两边可安装多少盏路灯?22×244(盏)答:大桥两边一共可以安装44盏路灯。10、年龄问题【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。【解题思路和方法】可以利用“差倍问题”的解题思路和方法。例1爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?解35÷57(倍)(35+1)÷(5+1)6(倍)答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。例2母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?解(1)母亲比女儿的年龄大多少岁?37730(岁)(2)几年后母亲的年龄是女儿的4倍?30÷(41)73(年)列成综合算式(377)÷(41)73(年)答:3年后母亲的年龄是女儿的4倍。例3甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?解这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:过去某一年 今年 将来某一年甲   岁     岁  61岁乙   4岁      岁  岁表中两个“”表示同一个数,两个“”表示同一个数。因为两个人的年龄差总相等:461,也就是4,61成等差数列,所以,61应该比4大3个年龄差,因此二人年龄差为(614)÷319(岁)甲今年的岁数为611942(岁)乙今年的岁数为421923(岁)答:甲今年的岁数是42岁,乙今年的岁数是23岁。11、行船问题【含义】行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。【数量关系】(顺水速度逆水速度)÷2船速(顺水速度逆水速度)÷2水速顺水速船速×2逆水速逆水速水速×2逆水速船速×2顺水速顺水速水速×2【解题思路和方法】大多数情况可以直接利用数量关系的公式。例1一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?解由条件知,顺水速船速水速320÷8,而水速为每小时15千米,所以,船速为每小时320÷81525(千米)船的逆水速为251510(千米)船逆水行这段路程的时间为320÷1032(小时)答:这只船逆水行这段路程需用32小时。例2甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?解由题意得甲船速水速360÷1036甲船速水速360÷1820可见(3620)相当于水速的2倍,所以,水速为每小时(3620)÷28(千米)又因为,乙船速水速360÷15,所以,乙船速为360÷15832(千米)乙船顺水速为32840(千米)所以,乙船顺水航行360千米需要360÷409(小时)答:乙船返回原地需要9小时。12、列车问题【含义】这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。【数量关系】火车过桥:过桥时间(车长桥长)÷车速火车追及:追及时间(甲车长乙车长距离)÷(甲车速乙车速)火车相遇:相遇时间(甲车长乙车长距离)÷(甲车速乙车速)【解题思路和方法】大多数情况可以直接利用数量关系的公式。例1一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?解火车3分钟所行的路程,就是桥长与火车车身长度的和。(1)火车3分钟行多少米?900×32700(米)(2)这列火车长多少米?27002400300(米)列成综合算式900×32400300(米)答:这列火车长300米。例2一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?解火车过桥所用的时间是2分5秒125秒,所走的路程是(8×125)米,这段路程就是(200米桥长),所以,桥长为8×125200800(米)答:大桥的长度是800米。例3一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?解从追上到追过,快车比慢车要多行(225140)米,而快车比慢车每秒多行(2217)米,因此,所求的时间为(225140)÷(2217)73(秒)答:需要73秒。例4一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?解如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。150÷(223)6(秒)答:火车从工人身旁驶过需要6秒钟。13、时钟问题【含义】就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。【数量关系】分针的速度是时针的12倍,二者的速度差为11/12。通常按追及问题来对待,也可以按差倍问题来计算。【解题思路和方法】变通为“追及问题”后可以直接利用公式。例1从时针指向4点开始,再经过多少分钟时针正好与分针重合?解钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/601/12格。每分钟分针比时针多走(11/12)11/12格。4点整,时针在前,分针在后,两针相距20格。所以分针追上时针的时间为20÷(11/12)22(分)答:再经过22分钟时针正好与分针重合。例2四点和五点之间,时针和分针在什么时候成直角?解钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。四点整的时候,分针在时针后(5×4)格,如果分针在时针后与它成直角,那么分针就要比时针多走(5×415)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5×415)格。再根据1分钟分针比时针多走(11/12)格就可以求出二针成直角的时间。(5×415)÷(11/12)6(分)(5×415)÷(11/12)38(分)答:4点06分及4点38分时两针成直角。例3六点与七点之间什么时候时针与分针重合?解六点整的时候,分针在时针后(5×6)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。(5×6)÷(11/12)33(分)答:6点33分的时候分针与时针重合。14、盈亏问题【含义】根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。【数量关系】一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数(盈亏)÷分配差如果两次都盈或都亏,则有:参加分配总人数(大盈小盈)÷分配差参加分配总人数(大亏小亏)÷分配差【解题思路和方法】大多数情况可以直接利用数量关系的公式。例1给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小朋友?有多少个苹果?解按照“参加分配的总人数(盈亏)÷分配差”的数量关系:(1)有小朋友多少人?(111)÷(43)12(人)(2)有多少个苹果?3×121147(个)答:有小朋友12人,有47个苹果。例2修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天。这条路全长多少米?解题中原定完成任务的天数,就相当于“参加分配的总人数”,按照“参加分配的总人数(大亏小亏)÷分配差”的数量关系,可以得知原定完成任务的天数为(260×8300×4)÷(300260)22(天)这条路全长为300×(224)7800(米)答:这条路全长7800米。例3学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完。问有多少车?多少人?解本题中的车辆数就相当于“参加分配的总人数”,于是就有(1)有多少车?(300)÷(4540)6(辆)(2)有多少人?40×630270(人)答:有6辆车,有270人。15、工程问题【含义】工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。工作量工作效率×工作时间工作时间工作量÷工作效率工作时间总工作量÷(甲工作效率乙工作效率)【解题思路和方法】变通后可以利用上述数量关系的公式。例1一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?解题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/101/15)。由此可以列出算式:1÷(1/101/15)1÷1/66(天)答:两队合做需要6天完成。例2一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?解一设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/61/8),二人合做时每小时完成(1/61/8)。因为二人合做需要1÷(1/61/8)小时,这个时间内,甲比乙多做24个零件,所以(1)每小时甲比乙多做多少零件?24÷1÷(1/61/8)7(个)(2)这批零件共有多少个?7÷(1/61/8)168(个)答:这批零件共有168个。解二上面这道题还可以用另一种方法计算:两人合做,完成任务时甲乙的工作量之比为1/61/843由此可知,甲比乙多完成总工作量的43/431/7所以,这批零件共有24÷1/7168(个)例3一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?解必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是60÷12560÷10660÷154因此余下的工作量由乙丙合做还需要(605×2)÷(64)5(小时)答:还需要5小时才能完成。例4一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?解注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知每小时的排水量为(1×2×151×4×5)÷(155)1即一个排水管与每个进水管的工作效率相同。由此可知一池水的总工作量为1×4×51×515又因为在2小时内,每个进水管的注水量为1×2,所以,2小时内注满一池水至少需要多少个进水管?(151×2)÷(1×2)8.59(个)答:至少需要9个进水管。16、正反比例问题【含义】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。【数量关系】判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。【解题思路和方法】解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。正反比例问题与前面讲过的倍比问题基本类似。例1修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?解由条件知,公路总长不变。原已修长度总长度1(13)14312现已修长度总长度1(12)13412比较以上两式可知,把总长度当作12份,则300米相当于(43)份,从而知公路总长为300÷(43)×123600(米)答:这条公路总长3600米。例2张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?解做题效率一定,做题数量与做题时间成正比例关系设91分钟可以做X应用题则有28491X28X91×4X91×4÷28X13答:91分钟可以做13道应用题。例3孙亮看十万个为什么这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?解书的页数一定,每天看的页数与需要的天数成反比例关系设X天可以看完,就有2436X1536X24×15X10答:10天就可以看完。17、按比例分配问题【含义】所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。【数量关系】从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数比的前后项之和【解题思路和方法】先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。例1学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?解总份数为474845140一班植树560×47/140188(棵)二班植树560×48/140192(棵)三班植树560×45/140180(棵)答:一、二、三班分别植树188棵、192棵、180棵。例2用60厘米长的铁丝围成一个三角形,三角形三条边的比是345。三条边的长各是多少厘米?解3451260×3/1215(厘米)60×4/1220(厘米)60×5/1225(厘米)答:三角形三条边的长分别是15厘米、20厘米、25厘米。例3从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。解如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到1/21/31/99629621717×9/17917×6/17617×2/172答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。例4某工厂第一、二、三车间人数之比为81221,第一车间比第二车间少80人,三个车间共多少人?解80÷(128)×(81221)820(人)答:三个车间一共820人。18、百分数问题【含义】百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。【数量关系】掌握“百分数”、“标准量”“比较量”三者之间的数量关系:百分数比较量÷标准量标准量比较量÷百分数【解题思路和方法】一般有三种基本类型:(1)求一个数是另一个数的百分之几;(2)已知一个数,求它的百分之几是多少;(3)已知一个数的百分之几是多少,求这个数。例1仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几?解(1)用去的占720÷(7206480)10%(2)剩下的占6480÷(7206480)90%答:用去了10%,剩下90%。例2红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几?解本题中女职工人数为标准量,男职工比女职工少的人数是比较量所以(525420)÷5250.220%或者1420÷5250.220%答:男职工人数比女职工少20%。例3红旗化工厂有男职工420人,女职工525人,女职工比男职工人数多

    注意事项

    本文(小学数学知识点最全总结.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开