欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    中考数学压轴题填空选择解答题分类汇编三及答案.doc

    • 资源ID:34637467       资源大小:5.10MB        全文页数:76页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考数学压轴题填空选择解答题分类汇编三及答案.doc

    如有侵权,请联系网站删除,仅供学习与交流中考数学压轴题填空选择解答题分类汇编三及答案【精品文档】第 76 页2012填空压轴、选择压轴、压轴题、倒数第二题(3: J Q)吉林长春8. 如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A, B为圆心,以大于AB长为半径作弧,两弧交于点C若点C的坐标为(m1,2n),则m与n的关系为【 】 (A)m2n=1 (B)m2n=1 (C)2nm=1 (D)n2m=1【分析】如图,根据题意作图知,OC为AOB的平分线,点C的坐标为(m1,2n)且在第一象限,点C到x轴CD=2n,到y轴距离CE= m1。根据角平分线上的点到角两边距离相等,得m1=2n,即m2n=1 。故选B。14.如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且ABx轴,则以AB为边的等边三角形ABC的周长为 .【分析】根据二次函数的性质,抛物线的对称轴为x=3。 A是抛物线与y轴的交点,点B是这条抛物线上的另一 点,且ABx轴。 A,B关于x=3对称。AB=6。又ABC是等边三角形,以AB为边的等边三角形ABC的周长为6×3=18。25.如图,在平面直角坐标系中,直线y=2x+42交x轴与点A,交直线y=x于点B,抛物线分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4,点P在这条抛物线上(1)求点C、D的纵坐标(2)求a、c的值(3)若Q为线段OB上一点,且P、Q两点的纵坐标都为5,求线段PQ的长(4)若Q为线段OB或线段AB上的一点,PQx轴,设P、Q两点之间的距离为d(d0),点Q的横坐标为m,直接写出d随m的增大而减小时m的取值范围【答案】解:(1)点C在直线AB:y=2x+42上,且C点的横坐标为16,y=2×16+42=10,即点C的纵坐标为10。D点在直线OB:y=x上,且D点的横坐标为4,点D的纵坐标为4。(2)由(1)知点C的坐标为(16,10),点D的坐标为(4,4),抛物线经过C、D两点,解得:。抛物线的解析式为。(3)P为线段OB上一点,纵坐标为5,P点的横坐标也为5。点Q在抛物线上,纵坐标为5,解得。当点Q的坐标为(,5),点P的坐标为(5,5),线段PQ的长为;当点Q的坐标为( ,5),点P的坐标为(5,5),线段PQ的长为。所以线段PQ的长为或。(4)当0m4或12m16时,d随m的增大而减小。(4)根据PQx轴,可知P和Q两点的横坐标相同,求出抛物线的顶点坐标和B点的坐标,当Q是线段OB上的一点时,结合图形写出m的范围,当Q是线段AB上的一点时,结合图形写出m的范围即可:根据题干条件:PQx轴,可知P、Q两点的横坐标相同,抛物线y=,顶点坐标为(8,2)。联立,解得点B的坐标为(14, 14)。当点Q为线段OB上时,如图所示,当0m4或12m14时,d随m的增大而减小;当点Q为线段AB上时,如图所示,当14m16时,d随m的增大而减小。综上所述,当0m4或12m16时,d随m的增大而减小。26.如图,在RtABC中,ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线ADDEEB运动,到点B停止点P在AD上以cm/s的速度运动,在折线DEEB上以1cm/s的速度运动当点P与点A不重合时,过点P作PQAC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为_cm,(用含t的代数式表示)(2)当点N落在AB边上时,求t的值(3)当正方形PQMN与ABC重叠部分图形为五边形时,设五边形的面积为S(cm²),求S与t的函数关系式(4)连结CD当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿MNM连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围【答案】解:(1)t2。(2)当点N落在AB边上时,有两种情况:如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t2=2,t=4。 如图(2)b,此时点P位于线段EB上DE=1 2 AC=4,点P在DE段的运动时间为4s,PE=t6,PB=BEPE=8t,PC=PE+CE=t4。PNAC,BNPBAC。PN:AC = PB:BC=2,PN=2PB=162t。由PN=PC,得162t=t4,解得t=。综上所述,当点N落在AB边上时,t=4或t=。(3)当正方形PQMN与ABC重叠部分图形为五边形时,有两种情况:当2t4时,如图(3)a所示。DP=t2,PQ=2,CQ=PE=DEDP=4(t2)=6t,AQ=ACCQ=2+t,AM=AQMQ=t。MNBC,AFMABC。FM:BC = AM:AC=1:2,即FM:AM=BC:AC=1:2。FM=AM=t当t8时,如图(3)b所示。PE=t6,PC=CM=PE+CE=t4,AM=ACCM=12t,PB=BEPE=8t,FM=AM=6t,PG=2PB=162t,综上所述,S与t的关系式为:。(4)在点P的整个运动过程中,点H落在线段CD上时t的取值范围是:t=或t=5或6t8。吉林6. 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同设原计划每天生产x台机器,则可列方程为 解析 因为原计划每天生产台机器,现在平均每天比原计划多生产50台,所以,现在生产600台机器所需时间是天,原计划生产450台机器所需时间是天,故选.14.如图,在等边中,是边上的一点,连接,将绕点逆时针旋转,得到,连接,若,则的周长是_. 解析 由. 又,是正三角形.的周长:吉林25.如图,在中,,动点从点出发,沿方向以的速度向点运动,动点从点同时出发,沿方向以的速度向点运动当点到达点时,, 两点同时停止运动以为一边向上作正方形,过点作,交于点.设点的运动时间为,正方形和梯形重合部分的面积为(1)当_s时,点与点重合;(2)当_s时,点在上;(3)当点在,两点之间(不包括,两点)时,求与之间的函数关系式答案 (1) 1; (2) . (3). 解析 (1) 因为动点从点出发,沿方向以的速度向点运动,动点从点同时出发,沿方向以的速度向点运动,同时出发,运动速度都是,所以,运动到的中点时重合,此时 . (2) 如图(第25题1),以为直角坐标系的原点,方向为轴的正方向,方向为轴的正方向,建立直角坐标系,则、.设时刻时,点在上,因为正方形,所以、又在中,,.又,,在中,,得过、的一次函数的解析式为:,由在上,所以的坐标满足的解析式,即:. (3)因为由(1)知,在时相遇,所以,只有当时,点在,两点之间(不包括,两点),正方形和梯形重合部分随的位置变化有三种情况:在之间;在上;在之外.在之间;如图(第25题2),此时,正方形和梯形重合部分为直角梯形,由(2)得:、过的一次函数的解析式为:、设与的交点为, 解,得:.所以,此时:.在上;如图(第25题3),满足过的一次函数的解析式:, 即:, 把代入的一次函数的解析式得:,所以为同一点,所以:,此时:在之外.如图(第25题4),设与相交于,与相交于,解得:; 解得:.所以,此时:综合、,得点在,两点之间(不包括,两点),正方形和梯形重合部分的面积为与之间的函数关系式为:26.问题情境 如图,在轴上有两点,().分别过点,点作轴的垂线,交抛物线于点、点.直线交直线于点,直线交直线于点,点、点的纵坐标分别记为、.特例探究 填空:当,时,=_,=_.当,时,=_,=_.归纳证明 对任意,(),猜想与的大小关系,并证明你的猜想拓展应用.(1) 若将“抛物线”改为“抛物线”,其它条件不变,请直接写出与的大小关系.(2) 连接,当时,直接写出和的关系及四边形的形状答案 特例探究;.归纳证明 猜想.证明(略)拓展应用(1).(2)四边形是平行四边形考点 一次函数、二次函数综合运用,函数图象上的点与函数解析式的关系,平行四边形的判定.解析 特例探究 当,时,所以直线的解析式为:;直线的解析式为:;此时解,得.解,得.所以,此时 当,时,所以直线的解析式为:;直线的解析式为:;此时解,得.解,得. 所以,此时归纳证明 猜想:对任意,(),都有:. 证明:对任意,()时,所以直线的解析式为:;直线的解析式为:;此时解,得.解,得. 所以,此时.拓展应用(1)若将“抛物线”改为“抛物线”,其它条件不变,仍然有:. 此时,所以直线的解析式为:;直线的解析式为:;此时解,得.解,得.江苏常州8.已知a、b、c、d都是正实数,且,给出下列四个不等式:;。 其中不等式正确的是【 】A. B. C. D. 【答案】A。17.如图,已知反比例函数和。点A在y轴的正半轴上,过点A作直线BCx轴,且分别与两个反比例函数的图象交于点B和C,连接OC、OB。若BOC的面积为,AC:AB=2:3,则= ,= 。【答案】2,3。江苏常州27.已知,在矩形ABCD中,AB=4,BC=2,点M为边BC的中点,点P为边CD上的动点(点P异于C、D两点)。连接PM,过点P作PM的垂线与射线DA相交于点E(如图)。设CP=x,DE=y。(1)写出y与x之间的函数关系式 ;(2)若点E与点A重合,则x的值为 ;(3)是否存在点P,使得点D关于直线PE的对称点D落在边AB上?若存在,求x的值;若不存在,请说明理由。【答案】解:(1)y=x24x。 (2)或。 (3)存在。 过点P作PHAB于点H。则 点D关于直线PE的对称点D落在边AB上, PD=PD=4x,ED=ED=y=x24x,EA=ADED=x24x2,PDE=D=900。 在RtDPH中,PH=2, DP =DP=4x,DH=。EDA=1800900PDH=900PDH=DPH,PDE=PHD =900, EDADPH。,即, 即,两边平方并整理得,2x24x1=0。解得。当时,y=,此时,点E已在边DA延长线上,不合题意,舍去(实际上是无理方程的增根)。当时,y=,此时,点E在边AD上,符合题意。当时,点D关于直线PE的对称点D落在边AB上。28.在平面直角坐标系xOy中,已知动点P在正比例函数y=x的图象上,点P的横坐标为m(m0)。以点P为圆心,为半径的圆交x轴于A、B两点(点A在点B的左侧),交y轴于C、D两点(D点在点C的上方)。点E为平行四边形DOPE的顶点(如图)。(1)写出点B、E的坐标(用含m的代数式表示);(2)连接DB、BE,设BDE的外接圆交y轴于点Q(点Q异于点D),连接EQ、BQ。试问线段BQ与线段EQ的长是否相等?为什么?(3)连接BC,求DBCDBE的度数。【答案】解:(1)B(3m,0),E(m,4m)。(2)线段BQ与线段EQ的长相等。理由如下:由(1)知B(3m,0),E(m,4m),根据圆的对称性,点D点B关于y=x对称,D(0,3m)。BDE是直角三角形。BE是BDE的外接圆的直径。设BDE的外接圆的圆心为点G,则由B(3m,0),E(m,4m)得G(2m,2m)。过点G作GIDG于点I,则I(0,2m)。根据垂径定理,得DI=IQ ,Q(0,m)。BQ=EQ。(3)延长EP交x轴于点H,则EPAB,BH=2m。根据垂径定理,得AH=BH=2m,AO= m。根据圆的对称性,OC=OA=m。又OB=3m,又COB=EDB=900,COBEDB。OBC=DBE。DBCDBE=DBCOBC=DBO。又OB=OC,DBO=450。DBCDBE=450。江苏海门7、已知函数(为常数)的图象上有两点,。若且,则与的大小关系是( )A.B. C. D. 与的大小不确定答案:B14、如图,于,交于点,则_答案:江苏海门21、设绝对值小于1的全体实数的集合为S,在S中定义一种运算“”,使得(1) 证明:结合律成立.(2) 证明:如果a与b在S中,那么也在S中.(1)(b)*c=*c=因为此式关于a,b,c对称,所以即得(a*b)*c=a*(b*c)成立,这样就利用对称性减少了一半计算(2)当1<a<1,1<b<1时,有1<<1成立,也即证<1成立,从而用比较法即可证得22、如图,对称轴为的抛物线与轴相交于点、.(1)求抛物线的解析式,并求出顶点的坐标;(2)连结AB,把AB所在的直线平移,使它经过原点O,得到直线.点P是上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为,当0S18时,求的取值范围;(3)在(2)的条件下,当取最大值时,抛物线上是否存在点,使OP为直角三角形且OP为直角边.若存在,直接写出点的坐标;若不存在,说明理由.22.解:(1)点B与O(0,0)关于x=3对称, 点B坐标为(6,0).将点B坐标代入得: 36+12=0, =.抛物线解析式为.当=3时,, 顶点A坐标为(3,3)(2)设直线AB解析式为y=kx+b.A(3,3),B(6,0), 解得, .直线AB且过点O,直线解析式为.点是上一动点且横坐标为,点坐标为()当在第四象限时(t0),=12×6×3+×6×=9+3.0S18,09+318,33.又0,03.5分当在第二象限时(0),作PM轴于M,设对称轴与轴交点为N. 则=3+9.0S18,03+918,33.又0,30.6分t的取值范围是30或03.(3)存在,点坐标为(3,3)或(6,0)或(3,9).9分江苏淮安8、下列说法正确的是【 】A、两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定。B、某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D、为了解我市学校“阳光体育”活动开展情况,必须采用普查的方法【分析】根据方差的意义,概率的意义,调查方法的选择逐一作出判断:A、两名同学5次成绩的平均分相同,则方差较小的同学成绩更稳定,故本选项错误;B、某班选出两名同学参加校演讲比赛,结果不一定是一名男生和一名女生,故本选项错误;C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大,故本选项正确;D、为了解我市学校“阳光体育”活动开展情况,易采用抽样调查的方法,故本选项错误。故选C。18、如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差 km/h。【分析】要求这两人骑自行车的速度相差,只要由图象求出两人5 h行驶的距离即可: 甲5 h行驶的距离为100 km,故速度为100÷5=20 km/h;乙5 h行驶的距离为100 km20km =80 km,故速度为80÷5=16 km/h。这两人骑自行车的速度相差2016=4 km/h。江苏淮安27、如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0),将矩形OABC绕点O按顺时针方向旋转1350,得到矩形EFGH(点E与O重合).(1)若GH交y轴于点M,则FOM,OM=(2)矩形EFGH沿y轴向上平移t个单位。直线GH与x轴交于点D,若ADBO,求t的值;若矩形EFHG与矩形OABC重叠部分的面积为S个平方单位,试求当0<t时,S与t之间的函数关系式。【答案】解:(1)450;。 (2)如图1,设直线HG与y轴交于点I。四边形OABC是矩形,ABDO,AB=OC。 C(2,0),AB=OC=2。又ADBO, 四边形ABOD是平行四边形。DO=AB=2。 由(1)易得,DOI是等腰直角三角形,OI=OD=2。t=IM=OMOI=2。如图2,过点F,G分别作x轴,y轴的垂线,垂足为R,T,连接OC。则由旋转的性质,得,OF=OA=4,FOR450,OR=RF=,F(,)。由旋转的性质和勾股定理,得OG=,设TG=MT=x,则OT=OMMT=。在RtOTG中,由勾股定理,得,解得x=。G(,)。用待定系数法求得直线FG的解析式为。当x=2时,。当t=时,就是GF平移到过点C时的位置(如图5)当0<t时,几个关键点如图3,4,5所示: 如图3 ,t=OE=OC=2,此时,矩形EFGH沿y轴向上平移过程中边EF经过点C;如图4,t=OE=OM=,此时,矩形EFGH沿y轴向上平移过程中边HG经过点O;如图5,t=OE=,此时,矩形EFGH沿y轴向上平移过程中边FG经过点C。 (I)当0<t2时,矩形EFHG与矩形OABC重叠部分的面积为OCS的面积(如图6)。此时,OE=OS= t, 。 (II)当2<t时,矩形EFHG与矩形OABC重叠部分的面积为直角梯形OEPC的面积(如图7)。此时OE= t,OC=2。 由E(0,t),FFO=450,用用待定系数法求得直线EP的解析式为。 当x=2时,。CP=。 (III)当<t时,矩形EFHG与矩形OABC重叠部分的面积为五边形EQCUV的面积(如图8),它等于直角梯形EQCO的面积减去直角三角形VOU的的面积。 此时,OE= t,OC=2,CQ= ,OU=OV= t。 综上所述,当0<t时,S与t之间的函数关系式为28、(2012江苏淮安12分)阅读理解如图1,ABC中,沿BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿B1A1C的平分线A1B2折叠,剪掉重叠部分;将余下部分沿BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称BAC是ABC的好角。小丽展示了确定BAC是ABC的好角的两种情况。情形一:如图2,沿等腰三角形ABC顶角BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿ABC的BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿B1A1C的平分线A1B2折叠,此时点B1与点C重合。探究发现(1)ABC中,B2C,经过两次折叠,BAC是不是ABC的好角?(填“是”或“不是”)(2)小丽经过三次折叠发现了BAC是ABC的好角,请探究B与C(不妨设B>C)之间的等量关系。根据以上内容猜想:若经过n 次折叠BAC是ABC的好角,则B与C不妨设B>C)之间的等量关系为应用提升(3)小丽找到一个三角形,三个角分别为150,600,1050,发现600和1050的两个角都是此三角形的好角,请你完成,如果一个三角形的最小角是40,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角【答案】解:(1)是。(2)B=3C。如图所示,在ABC中,沿BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿B2A2C的平分线A2B3折叠,点B2与点C重合,则BAC是ABC的好角。证明如下:根据折叠的性质知,B=AA1B1,C=A2B2C,A1B1C=A1A2B2,根据三角形的外角定理知,A1A2B2=C+A2B2C=2C。根据四边形的外角定理知,BAC+B+AA1B1A1 B1C=BAC+2B2C=180°,根据三角形ABC的内角和定理知,BAC+B+C=180°,B=3C。故若经过n次折叠BAC是ABC的好角,则B与C(不妨设BC)之间的等量关系为B=nC。(3)由(2)知,B=nC,BAC是ABC的好角,C=nA,ABC是ABC的好角,A=nB,BCA是ABC的好角。如果一个三角形的最小角是4°,三角形另外两个角的度数是88°、88°。江苏连云港8小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出67.5°角的正切值是【 】A1 B1 C2.5 D【分析】将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,ABBE,AEBEAB45°,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,AEEF,EAFEFA22.5°。FAB67.5°。设ABx,则AEEFx,an67.5°tanFABt。故选B。16如图,直线yk1xb与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1xb的解集是【分析】不等式k1xb的解集即k1xb的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线yk1xb在双曲线下方的自变量x的取值范围即可。而直线yk1xb的图象可以由yk1xb向下平移2b个单位得到,如图所示。根据函数图象的对称性可得:直线yk1xb和yk1xb与双曲线的交点坐标关于原点对称。由关于原点对称的坐标点性质,直线yk1xb图象与双曲线图象交点A、B的横坐标为A、B两点横坐标的相反数,即为1,5。由图知,当5x1或x0时,直线yk1xb图象在双曲线图象下方。不等式k1xb的解集是5x1或x0。江苏连云港26如图,甲、乙两人分别从A(1,)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点(1)请说明甲、乙两人到达O点前,MN与AB不可能平行(2)当t为何值时,OMNOBA?(3)甲、乙两人之间的距离为MN的长,设sMN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值【答案】解:(1)A坐标为(1,),OA2,AOB60°。 甲达到O点时间为t,乙达到O点的时间为t,甲先到达O点,所以t或t时,O、M、N三点不能连接成三角形。当t时,OM24t,ON64t,假设MNAB。则OMNOAB。,解得t0。即在甲到达O点前,只有当t0时,OMNOAB。MN与AB不可能平行。当t时,如图,PMNPONPABMN与AB不平行。综上所述,在甲、乙两人到达O点前, MN与AB不可能平行。(2) 由(1)知,当t时,OMN不相似OBA。当t时,OM4t 2,ON4t 6,由解得t2,当t2时,OMNOBA。(3)当t时,如图1,过点M作MHx轴,垂足为H,在RtMOH中,AOB60°,MHOMsin60°(24t)×(12t),OH0Mcos60°(24t)×12t,NH(64t)(12t)52t。s(12t)2(52t)216t232t28。当t时,如图2,作MHx轴,垂足为H,在RtMNH中,MH(4t2)(2t1),NH(4t2)(64t)52t,s(12t)2(52t)216t232t28。当t时,同理可得s16t232t28。综上所述,s16t232t28。s16t232t2816(t1)212,当t1时,s有最小值为12,甲、乙两人距离最小值为(km)。27已知梯形ABCD,ADBC,ABBC,AD1,AB2,BC3,问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由问题3:若P为AB边上任意一点,延长PD到E,使DEPD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由问题4:如图3,若P为DC边上任意一点,延长PA到E,使AEnPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由设PBx,则AP2x,在RtDPC中,PD2PC2DC2,即x232(2x)2128,化简得x22x30,(2)24×1×380,方程无解。不存在PBx,使DPC90°。对角线PQ与DC不可能相等。问题2:存在。理由如下:如图2,在平行四边形PCQD中,设对角线PQ与DC相交于点G,则G是DC的中点。过点Q作QHBC,交BC的延长线于H。ADBC,ADCDCH,即ADPPDGDCQQCH。PDCQ,PDCDCQ。ADPQCH。又PDCQ,RtADPRtHCQ(AAS)。ADHC。AD1,BC3,BH4,当PQAB时,PQ的长最小,即为4。问题3:存在。理由如下:如图3,设PQ与DC相交于点G,PECQ,PDDE,。G是DC上一定点。作QHBC,交BC的延长线于H,同理可证ADPQCH,RtADPRtHCQ。AD1,CH2。BHBGCH325。当PQAB时,PQ的长最小,即为5。问题4:如图3,设PQ与AB相交于点G,PEBQ,AEnPA,。G是DC上一定点。作QHPE,交CB的延长线于H,过点C作CKCD,交QH的延长线于K。ADBC,ABBC,DQHC,DAPPAGQBHQBG90°PAGQBG,QBHPAD。ADPBHQ,AD1, BHn1。CHBHBC3n1n4。江苏南京6、如图,菱形纸片ABCD中,A=600,将纸片折叠,点A、D分别落在A、D处,且AD经过B,EF为折痕,当DFCD时,的值为【 】A. B. C. D. 16、在平面直角坐标系中,规定把一个三角形先沿x轴翻折,再向右平移两个单位称为一次变换,如图,已知等边三角形ABC的顶点B、C的坐标分别是,(1,1),(3,1),把三角形ABC经过连续9次这样的变换得到三角形ABC,则点A的对应点A的坐标是 【分析】先由ABC是等边三角形,点B、C的坐标分别是(1,1)、(3,1),求得点A的坐标;再寻找规律,求出点A的对应点A的坐标: 如图,作BC的中垂线交BC于点D,则 ABC是等边三角形,点B、C的坐标分别是(1,1)、(3,1), BD=1,。A(2,)。 根据题意,可得规律:第n次变换后的点A的对应点的坐标:当n为奇数时为(2n2,),当n为偶数时为(2n2, )。 把ABC经过连续9次这样的变换得到ABC,则点A的对应点A的坐标是:(16,)。江苏南京26、 “?”的思考下框中是小明对一道题目的解答以及老师的批阅。题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x2x=288解这个方程,得x1=12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2我的结果也正确小明发现他解答的结果是正确的,但是老师却在他的解答中划了一条横线,并打开了一个“?”结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样 (2)如图,矩形ABCD在矩形ABCD的内部,ABAB,ADAD,且AD:AB=2:1,设AB与AB、BC与BC、CD与CD、DA与DA之间的距离分别为a、b、c、d,要使矩形ABCD矩形ABCD,a、b、c、d应满足什么条件?请说明理由【答案】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由。在“设矩形蔬菜种植区域的宽为xm,则长为2xm”前补充以下过程:设温室的宽为ym,则长为2ym。则矩形蔬菜种植区域的宽为(y11)m,长为(2y31)m。,矩形蔬菜种植区域的长与宽之比为2:1。(2)a+cb+d =2。理由如下:要使矩形ABCD矩形ABCD,就要,即,即 ,即a+cb+d =2。27、如图,A、B为O上的两个定点,P是O上的动点(P不与A、B重合),我们称APB为O上关于A、B的滑动角。(1)已知APB是上关于点A、B的滑动角。 若AB为O的直径,则APB= 若O半径为1,AB=,求APB的度数(2)已知为外一点,以为圆心作一个圆与相交于A、B两点,APB为上关于点A、B的滑动角,直线PA、PB分别交于点M、N(点M与点A、点N与点B均不重合),连接AN,试探索APB与MAN、ANB之间的数量关系。【答案】解:(1)900。如图,连接AB、OA、OB在AOB中,OA=OB=1AB=,OA2+OB2=AB2。AOB=90°。当点P在优弧AB上时(如图1),APB=AOB=45°;当点P在劣弧AB上时(如图2),APB=(360°AOB)=135°。(2)根据点P在O1上的位置分为以下四种情况第一种情况:点P在O2外,且点A在点P与点M之间,点B在点P与点N之间,如图3,MAN=APB+ANB,APB=MANANB。第二种情况:点P在O2外,且点A在点P与点M之间,点N在点P与点B之间,如图4,MAN=APB+ANP=APB+(180°ANB),APB=MAN+ANB180°。第三种情况:点P在O2外,且点M在点P与点A之间,点B在点P与点N之间,如图5,APB+ANB+MAN=180°,APB=180°MANANB。第四种情况:点P在O2内,如图6,APB=MAN+ANB。江苏南通10如图,在ABC中,ACB90º,B30º,AC1,AC在直线l上将ABC绕点A顺时针旋转到位置,可得到点P1,此时AP12;将位置的三角形绕点P1顺时针旋转到位置,可得到点P2,此时AP22;将位置的三角形绕点P2顺时针旋转到位置,可得到点P3,此时AP33;,按此规律继续旋转,直到得到点P2012为止,则AP2012【】A2011671B2012671C2013671D2014671【分析】寻找规律,发现将RtABC绕点A,P1,P2,···顺时针旋转,每旋转一次, APi(i=1,2,3,···)的长度依次增加2, ,1,且三次一循环,按此规律即可求解: RtABC中,ACB=90°,B=30°,AC=1,AB=2,BC=。根据旋转的性质,将RtABC绕点A,P1,P2,···顺时针旋转,每旋转一次, APi(i=1,2,3,···)的长度依次增加2, ,1,且三次一循环。 2012÷3=6702,AP2012=670(3+ )+2+ =2012+671 。故选B。18无论a取什么实数,点P(a1,2a3)都在直线l上,Q(m,n)

    注意事项

    本文(中考数学压轴题填空选择解答题分类汇编三及答案.doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开