欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    人教版七年级第一学期数学期末总复习知识点汇总1.docx

    • 资源ID:34902139       资源大小:118.82KB        全文页数:8页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版七年级第一学期数学期末总复习知识点汇总1.docx

    七年级数学上册学问点第一章 有理数1.1 正数及负数 1.正数和负数的概念正数:大于0的数叫正数。(依据须要,有时在正数前面也加上“+”)负数:在以前学过的0以外的数前面加上负号“”的数叫负数。及正数具有相反意义。0既不是正数也不是负数。0是正数和负数的分界。留意:字母a可以表示随意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(假如出推断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简洁推断)正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。2. 具有相反意义的量若正数表示某种意义的量,则负数可以表示具有及该正数相反意义的量,比方:零上8表示为:+8;零下8表示为:-83.0表示的意义0表示“ 没有”,如教室里有0个人,就是说教室里没有人;0是正数和负数的分界限,0既不是正数,也不是负数。如:(3)0表示一个准确的量。如:0以及有些题目中的基准,比方以海平面为基准,则0米就表示海平面。留意:搞清相反意义的量:南北;东西;上下;左右;上升下降;凹凸;增长削减等1.2 有理数 有理数1. 有理数的概念正整数、0、负整数统称为整数(0和正整数统称为自然数)正分数和负分数统称为分数正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。理解:只有能化成分数的数才是有理数。是无限不循环小数,不能写成分数形式,不是有理数。有限小数和无限循环小数都可化成分数,都是有理数。3,整数也能化成分数,也是有理数留意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8也是偶数,-1,-3,-5也是奇数。2. 有理数的分类按有理数的意义分类 按正、负来分 正整数 正整数 整数 0 正有理数 负整数 正分数有理数 有理数 0 (0不能无视) 正分数 负整数 分数 负有理数 负分数 负分数总结:正整数、0统称为非负整数(也叫自然数) 负整数、0统称为非正整数 正有理数、0统称为非负有理数 负有理数、0统称为非正有理数数轴数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。留意:数轴是一条向两端无限延长的直线;原点、正方向、单位长度是数轴的三要素,三者缺一不行;同一数轴上的单位长度要统一;数轴的三要素都是依据实际须要规定的。 2.数轴上的点及有理数的关系全部的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。全部的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数及数轴上的点不是一一对应关系。(如,数轴上的点不是有理数) 3.利用数轴表示两数大小在数轴上数的大小比拟,右边的数总比左边的数大;正数都大于0,负数都小于0,正数大于负数;两个负数比拟,间隔 原点远的数比间隔 原点近的数小。4.数轴上特殊的最大(小)数最小的自然数是0,无最大的自然数;最小的正整数是1,无最大的正整数;最大的负整数是-1,无最小的负整数5.a可以表示什么数a>0表示a是正数;反之,a是正数,则a>0;a<0表示a是负数;反之,a是负数,则a<0a=0表示a是0;反之,a是0,,则a=0相反数相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。留意:相反数是成对出现的;相反数只有符号不同,若一个为正,则另一个为负;0的相反数是它本身;相反数为本身的数是0。2.相反数的性质及断定任何数都有相反数,且只有一个;0的相反数是0;互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上及原点间隔 相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且及原点的间隔 相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。4.相反数的求法求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得-55.相反数的表示方法一般地,数a 的相反数是-a ,其中a是随意有理数,可以是正数、负数或0。当a>0时,-a<0(正数的相反数是负数)当a<0时,-a>0(负数的相反数是正数)当a=0时,-a=0,(0的相反数是0)肯定值肯定值的几何定义一般地,数轴上表示数a的点及原点的间隔 叫做a的肯定值,记作|a|。2.肯定值的代数定义一个正数的肯定值是它本身; 一个负数的肯定值是它的相反数; 0的肯定值是0.可用字母表示为:假如a>0,那么|a|=a; 假如a<0,那么|a|=-a; 假如a=0,那么|a|=0。可归纳为:a0,<> |a|=a (非负数的肯定值等于本身;肯定值等于本身的数是非负数。)a0,<> |a|=-a (非正数的肯定值等于其相反数;肯定值等于其相反数的数是非正数。)经典考题 如数轴所示,化简下列各数 |a|, |b| , |c| , |a-b|, |a-c| , |b+c|解:由题知道,因为a>0 ,b<0,c<0, a-b>0, a-c>0, b+c<0,所以|a|=a ,|b|=-b, |c|=-c ,|a-b|=a-b , |a-c|=a-c ,|b+c|=-(b+c)=-b-c3.肯定值的性质任何一个有理数的肯定值都是非负数,也就是说肯定值具有非负性。所以,a取任何有理数,都有|a|0。即0的肯定值是0;肯定值是0的数是0.即:a=0 <> |a|=0;一个数的肯定值是非负数,肯定值最小的数是0.即:|a|0;任何数的肯定值都不小于原数。即:|a|a;肯定值是一样正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;互为相反数的两数的肯定值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;肯定值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;若几个数的肯定值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)经典考题已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值解:因为|a+3|0,|2b-2|0,|c-1|0,且|a+3|+|2b-2|+|c-1|=0所以|a+3|=0 ,|2b-2|=0 ,|c-1|=0 即a=-3 ,b=1 ,c=1所以a+b+c=-3+1+1=-14.有理数大小的比拟利用数轴比拟两个数的大小:数轴上的两个数相比拟,左边的总比右边的小;利用肯定值比拟两个负数的大小:两个负数比拟大小,肯定值大的反而小;异号两数比拟大小,正数大于负数。5.肯定值的化简当a0时, |a|=a ; 当a0时, |a|=-a 6.已知一个数的肯定值,求这个数一个数a的肯定值就是数轴上表示数a的点到原点的间隔 ,一般地,肯定值为同一个正数的有理数有两个,它们互为相反数,肯定值为0的数是0,没有肯定值为负数的数。如:|a|=5,则a=土51.3 有理数的加减法 有理数的加减法1.有理数的加法法则同号两数相加,取一样的符号,并把肯定值相加;肯定值不相等的异号两数相加,取肯定值较大的加数的符号,并用较大的肯定值减去较小的肯定值;互为相反数的两数相加,和为零;一个数及零相加,仍得这个数。2.有理数加法的运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)在运用运算律时,肯定要依据须要敏捷运用,以到达化简的目的,通常有下列规律:互为相反数的两个数先相加“相反数结合法”;符号一样的两个数先相加“同号结合法”;分母一样的数先相加“同分母结合法”;几个数相加得到整数,先相加“凑整法”;整数及整数、小数及小数相加“同形结合法”。3.加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。即:当b>0时,a+b>a 当b<0时,a+b<a 当b=0时,a+b=a4.有理数减法法则减去一个数,等于加上这个数的相反数。用字母表示为:a-b=a+(-b)。5.有理数加减法统一成加法的意义在有理数加减法混合运算中,依据有理数减法法则,可以将减法转化成加法后,再依据加法法则进展计算。在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:按这个式子表示的意义读作“负8、负7、负6、正5的和”按运算意义读作“负8减7减6加5”6.有理数加减混合运算中运用结合律时的一些技巧:.把符号一样的加数相结合(同号结合法) (-33)-(-18)+(-15)-(+1)+(+23)原式=-33+(+18)+(-15)+(-1)+(+23) (将减法转换成加法)=-33+18-15-1+23 (省略加号和括号)=(-33-15-1)+(18+23) (把符号一样的加数相结合)=-49+41 (运用加法法则一进展运算)=-8 (运用加法法则二进展运算).把和为整数的加数相结合 (凑整法) (+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8) (将减法转换成加法)=6.6-5.2+3.8-2.6-4.8 (省略加号和括号)=(6.6-2.6)+(-5.2-4.8)+3.8 (把和为整数的加数相结合)=4-10+3.8 (运用加法法则进展运算)=7.8-10 (把符号一样的加数相结合,并进展运算)=-2.2 (得出结论).把分母一样或便于通分的加数相结合(同分母结合法)-+-+-原式=(-)+(-+)+(+-)=-1+0-=-1.既有小数又有分数的运算要统一后再结合(先统一后结合) (+0.125)-(-3)+(-3)-(-10)-(+1.25)原式=(+)+(+3)+(-3)+(+10)+(-1)=+3-3+10-1=(3-1)+(-3)+10=2-3+10=-3+13=10.把带分数拆分后再结合(先拆分后结合)-3+10-12+4原式=(-3+10-12+4)+(-+)+(-)=-1+=-1+-.分组结合2-3-4+5+6-7-8+9+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+(66-67-68+69)=0.先拆项后结合(1+3+5+7+99)-(2+4+6+8+100)1.4 有理数的乘除法1.有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把肯定值相乘;(“同号得正,异号得负”专指“两数相乘”的状况,假如因数超过两个,就必需运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,假如其中有因数为0,则积等于0.2.倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·=1(a0),就是说a和互为倒数,即a是的倒数,是a的倒数。留意:0没有倒数;求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不变更这个数的性质);倒数等于它本身的数是1或-1,不包括0。3.有理数的乘法运算律乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。即ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc).乘法安排律:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加。即a(b+c)=ab+ac4.有理数的除法法则(1)除以一个不等0的数,等于乘以这个数的倒数。(2)两数相除,同号得正,异号得负,并把肯定值相除。0除以任何一个不等于0的数,都得05.有理数的乘除混合运算(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最终求出结果。(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则依据先乘除,后加减的依次进展。有理数的乘方1.乘方的概念求n 个一样因数的积的运算,叫做乘方,乘方的结果叫做幂。在 中,a 叫做底数,n 叫做指数。2.乘方的性质(1)负数的奇次幂是负数,负数的偶次幂的正数。(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。有理数的混合运算做有理数的混合运算时,应留意以下运算依次:1.先乘方,再乘除,最终加减;2.同级运算,从左到右进展;3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进展。科学记数法把一个大于10的数表示成 的形式(其中, n是正整数),这种记数法是科学记数法。 从一个数的左边第一个非0数字起,到末位数字止,全部数字都是这个数的有效数字。四舍五入遵从准确到哪一位就从这一位的下一位开场,而不是从数字的末尾往前四舍五入。比方:3.5449准确到0.01就是3.54而不是3.55. 第二章 整式的加减2.1 整式 1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式单独一个数或一个字母也是单项式因此,推断代数式是否是单项式,关键要看代数式中数及字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式2、单项式的系数:是指单项式中的数字因数;3、单项数的次数:是指单项式中全部字母的指数的和4、多项式:几个单项式的和。推断代数式是否是多项式,关键要看代数式中的每一项是否是单项式每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式特殊留意多项式的项包括它前面的性质符号常数项的次数为0。5、它们都是用字母表示数或列式表示数量关系。留意单项式和多项式的每一项都包括它前面的符号。6、单项式和多项式统称为整式。留意:分母上含有字母的不是整式。代数式书写标准: 数及字母、字母及字母中的乘号可以省略不写或用“·”表示,并把数字放到字母前; 出现除式时,用分数表示; 带分数及字母相乘时,带分数要化成假分数; 若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。2.2整式的加减1、同类项:所含字母一样,并且一样字母的指数也一样的项。及字母前面的系数(0)无关。2、同类项必需同时满意两个条件:(1)所含字母一样;(2)一样字母的次数一样,二者缺一不行同类项及系数大小、字母的排列依次无关3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和安排律。合并同类项的步骤:(1)准确的找出同类项;(2)运用加法交换律,把同类项交换位置后结合在一起;(3)利用法则,把同类项的系数相加,字母和字母的指数不变;(4)写出合并后的结果。4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母局部不变;5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。6、整式加减的一般步骤:一去、二找、三合(1)假如遇到括号按去括号法则先去括号. (2)结合同类项. (3)合并同类项第三章 一元一次方程3.1 一元一次方程1、方程是含有未知数的等式。 2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。留意:推断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简前方程中只含有一个未知数;3)经整理前方程中未知数的次数是1.一般形式:ax+b=0(a0)留意:未知数在分母中时,它的次数不能看成是1次。如,它不是一元一次方程。3、解方程就是求出访方程中等号左右两边相等的未知数的值,这个值就是方程的解。 4、等式的性质: 1)等式两边同时加(或减)同一个数(或式子),结果仍相等;2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。留意:运用性质时,肯定要留意等号两边都要同时变;运用性质2时,肯定要留意0这个数.3.2 解一元一次方程在实际解方程的过程中,以下步骤不肯定完全用上,有些步骤还需重复运用. 因此在解方程时还要留意以下几点:去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母及分母化整是两个概念,不能混淆;去括号:遵从先去小括号,再去中括号,最终去大括号;不要漏乘括号的项;不要弄错符号;移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号;留意:移项时要跨越“=”号,移过的项肯定要变号。合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;系数化为1::字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要分子、分母搞颠倒。3.3 实际问题及一元一次方程一概念梳理列一元一次方程解决实际问题的一般步骤是:审题,特殊留意关键的字和词的意义,弄清相关数量关系;设出未知数(留意单位);依据相等关系列出方程;解这个方程;检验并写出答案(包括单位名称)。一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案。二、思想方法(本单元常用到的数学思想方法小结)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想. 方程思想:用方程解决实际问题的思想就是方程思想. 化归思想:解一元一次方程的过程,本质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简洁的方程来代替原来的方程,最终逐步把方程转化为x=a的形式. 表达了化“未知”为“已知”的化归思想. 数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,表达了数形结合的优越性. 分类思想:在解含字母系数的方程和含肯定值符号的方程过程中往往须要分类探讨,在解有关方案设计的实际问题的过程中往往也要留意分类思想在过程中的运用.三、数学思想方法的学习1. 解一元一次方程时,要明确每一步过程都作什么变形,应当留意什么问题. 2. 找寻实际问题的数量关系时,要擅长借助直观分析法,如表格法,直线分析法和图示分析法等. 3. 列方程解应用题的检验包括两个方面:检验求得的结果是不是方程的解;是要推断方程的解是否符合题目中的实际意义.实际问题的常见类型:行程问题:路程=时间×速度,时间=,速度=(单位:路程米、千米;时间秒、分、时;速度米秒、米分、千米小时)工程问题:工作总量=工作时间×工作效率,工作总量=各局部工作量的和利润问题:利润=售价-进价,利润率=,售价=标价×(1-折扣)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;锻造前的体积=锻造后的体积利息问题:本息和=本金+利息;利息=本金×利率四、一元一次方程典型例题例1. 已知方程2xm3+3x=5是一元一次方程,则m= . 解:由一元一次方程的定义可知m3=1,解得m=4.或m3=0,解得m=3 所以m=4或m=3警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里肯定要留意x的指数是(m3). 例2. 已知是方程ax2(2a3)x+5=0的解,求a的值. 解:x=2是方程ax2(2a3)x+5=0的解将x=2代入方程,得 a·(2)2(2a3)·(2)+5=0化简,得 4a+4a6+5=0 a=点拨:要想解决这道题目,应当从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=2代入方程,然后再解关于a的一元一次方程就可以了. 例3. 解方程2(x+1)3(4x3)=9(1x). 解:去括号,得 2x+212x+9=99x,移项,得 2+99=12x2x9x. 合并同类项,得 2=x,即x=2. 点拨:此题的一般解法是去括号后将全部的未知项移到方程的左边,已知项移到方程的右边,其实,我们在去括号后发觉全部的未知项移到方程的左边合并同类项后系数不为正,为了削减计算的难度,我们可以依据等式的对称性,把全部的未知项移到右边去,已知项移到方程的左边,最终再写成x=a的形式. 例4. 解方程 . 解析:方程两边乘以8,再移项合并同类项,得同样,方程两边乘以6,再移项合并同类项,得方程两边乘以4,再移项合并同类项,得方程两边乘以2,再移项合并同类项,得x=3. 说明:解方程时,遇到多重括号,一般的方法是从里往外或从外往里运用乘法的安排律逐层去特号,而本题最简捷的方法却不是这样,是通过方程两边分别乘以一个数,到达去分母和去括号的目的。例5. 解方程. 解析:方程可以化为 整理,得 去括号移项合并同类项,得 7x=11,所以x=. 说明:一见到此方程,很多同学马上想到教师介绍的方法,那就是把分母化成整数,即各分数分子分母都乘以10,再设法去分母,其实,细致视察这个方程,我们可以将分母化成整数及去分母两步一步到位,第一个分数分子分母都乘以2,第二个分数分子分母都乘以5,第三个分数分子分母都乘以10. 例6. 解方程 解析:原方程可化为 方程即为 所以有 再来解之,就能很快得到答案: x=3. 学问链接:此题假如干脆去分母,或者通分,数字较大,运算烦琐,发觉分母6=2×3,12=3×4,20=4×5,30=5×6,联络到我们小学曾做过这样的分式化简题,故采纳拆项法解之比拟简便. 例7. 参与某保险公司的医疗保险,住院治疗的病人可享受分段报销,保险公司制度的报销细则如下表,某人今年住院治疗后得到保险公司报销的金额是1260元,那么此人的实际医疗费是( )住院医疗费(元)报销率(%)不超过500的局部0超过5001000的局部60超过10003000的局部80 A. 2600元 B. 2200元 C. 2575元 D. 2525元解析:设此人的实际医疗费为x元,依据题意列方程,得500×0+500×60%+(x500500) ×80%=1260. 解之,得x=2200,即此人的实际医疗费是2200元. 故选B. 点拨:解答本题首先要弄清题意,读懂图表,从中应理解医疗费是分段计算累加求和而得的. 因为500×60%12602000×80%,所以可知推断此人的医疗费用应按第一档至第三档累加计算. 例8. 我市某县城为激励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过局部按每立方米2元收费. 假如某户居民今年5月缴纳了17元水费,那么这户居民今年5月的用水量为_立方米. 解析:由于1×717,所以该户居民今年5月的用水量超标. 设这户居民5月的用水量为x立方米,可得方程:7×1+2(x7)=17, 解得x=12. 所以,这户居民5月的用水量为12立方米. 例9. 足球竞赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分,一支足球队在某个赛季中共需竞赛14场,现已竞赛了8场,输了1场,得17分,请问:前8场竞赛中,这支球队共胜了多少场?这支球队打满14场竞赛,最高能得多少分?通过对竞赛状况的分析,这支球队打满14场竞赛,得分不低于29分,就可以到达预期的目的,请你分析一下,在后面的6场竞赛中,这支球队至少要胜几场,才能到达预期目的?解析:设这个球队胜了x场,则平了(81x)场,依据题意,得: 3x+(81x)=17. 解得x=5. 所以,前8场竞赛中,这个球队共胜了5场. 打满14场竞赛最高能得17+(148)×3=35分. 由题意知,以后的6场竞赛中,只要得分不低于12分即可. 胜不少于4场,肯定能到达预期目的. 而胜了3场,平3场,正好到达预期目的. 所以在以后的竞赛中,这个球队至少要胜3场. 例10. 国家为了激励青少年成才,特殊是贫困家庭的孩子能上得起高校,设置了教化储蓄,其实惠在于,目前暂不征收利息税. 为了打算小雷5年后上高校的学费6000元,他的父母如今就参与了教化储蓄,小雷和他父母探讨了以下两种方案:先存一个2年期,2年后将本息和再转存一个3年期; 干脆存入一个5年期. 你认为以上两种方案,哪种开场存入的本金较少教化储蓄(整存整取)年利率一年:2. 25%;二年:2. 27%;三年:3. 24%;五年:3. 60%. 解析:理解储蓄的有关学问,驾驭利息的计算方法,是解决这类问题的关键,对于此题,我们可以设小雷父母开场存入x元. 然后分别计算两种方案哪种开场存入的本金较少. 2年后,本息和为x(1+2. 70%×2)=1. 054x;再存3年后,本息和要到达6000元,则1. 054x(1+3. 24%×3)=6000. 解得 x5188. 按第二种方案,可得方程 x(1+3. 60%×5)=6000. 解得 x5085. 所以,按他们探讨的第二种方案,开场存入的本金比拟少. 例11. 扬子江药业集团消费的某种药品包装盒的侧面绽开图如图所示. 假如长方体盒子的长比宽多4,求这种药品包装盒的体积. 分析:从绽开图上的数据可以看出,绽开图中两高及两宽和为14cm,所以一个宽及一个高的和为7cm,假如设这种药品包装盒的宽为xcm,则高为(7x)cm,因为长比宽多4cm,所以长为(x+4)cm,依据绽开图可知一个长及两个高的和为13cm,由此可列出方程. 解:设这种药品包装盒的宽为xcm,则高为(7x)cm,长为(x+4)cm. 依据题意,得(x+4)+2(7x)=13,解得 x=5,所以7x=2,x+4=9. 故长为9cm,宽为5cm,高为2cm. 所以这种药品包装盒的体积为:9×5×2=90(cm3). 例12. 某石油进口国这个月的石油进口量比上个月削减了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率. 解:设这个月的石油价格相对上个月的增长率为x. 依据题意得(1x)(15%)=114% 解得x=20% 答:这个月的石油价格相对上个月的增长率为20%. 点评:本题是一道增长率的应用题. 本月的进口石油的费用等于上个月的费用加上增加的费用,也就是本月的石油进口量乘以本月的价格. 设出未知数,分别表示出每一个数量,列出方程进展求解. 列方程解应用题的关键是找对等量关系,然用代数式表示出其中的量,列方程解答. 例13. 某市参与省初中数学竞赛的选手平均分数为78分,其中参赛的男选手比女选手多50%,而女选手的平均分比男选手的平均分数高10%,那么女选手的平均分数为_. 解析:总平均分数和参赛选手的人数及其得分有关. 因此,必需增设男选手或女选手的人数为协助未知数. 不妨设男选手的平均分数为x分,女选手的人数为a 人,那么女选手的平均分数为1. 1x分,男选手的人数为1. 5a人,从而可列出方程,解得x=75,所以1. 1x=82. 5. 即女选手的平均分数为82. 5分. 第四章 几何图形初步4.1 几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。2、立体图形:这些几何图形的各局部不都在同一个平面内。3、平面图形:这些几何图形的各局部都在同一个平面内。4、虽然立体图形及平面图形是两类不同的几何图形,但它们是相互联络的。立体图形中某些局部是平面图形。5、三视图:从左面看,从正面看,从上面看6、绽开图:有些立体图形是由一些平面图形围成的,将它们的外表适当剪开,可以绽开成平面图形。这样的平面图形称为相应立体图形的绽开图。3、生活中的立体图形 圆柱 柱体 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、生活中的立体图形 球体 (按名称分) 圆锥 椎体棱锥几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;点无大小,线、面有曲直;几何图形都是由点、线、面、体组成的;点动成线,线动成面,面动成体;点:是组成几何图形的根本元素。4、棱柱及其有关概念: 棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。棱柱的全部侧棱长都相等,棱柱的上下两个底面是一样的多边形,直棱柱的侧面是长方形。棱柱的侧面有可能是长方形,也有可能是平行四边形。5、正方体的平面绽开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。7、三视图物体的三视图指主视图、俯视图、左视图。主视图:从正面看到的图,叫做主视图。左视图:从左面看到的图,叫做左视图。俯视图:从上面看到的图,叫做俯视图。平面图形的相识线段,射线,直线 名称不同点联络共同点延长性端点数线段不能延长2线段向一方延长就成射线,向两方延长就成直线都是直的线射线只能向一方延长1直线可向两方无限延长无点、直线、射线和线段的表示在几何里,我们常用字母表示图形。一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l,线段AB点和直线的位置关系有两种:点在直线上,或者说直线经过这个点。点在直线外,或者说直线不经过这个点。线段的性质(1)线段公理:两点之间的全部连线中,线段最短。(2)两点之间的间隔 :两点之间线段的长度,叫做这两点之间的间隔 。(3)线段的中点到两端点的间隔 相等。(4)线段的大小关系和它们的长度的大小关系是一样的。(5)线段的比拟:1.目测法 2.叠合法 3.度量法线段的中点:点M把线段AB分成相等的两条相等的线段AM及BM,点M叫做线段AB的中点。MABM是线段AB的中点AM=BM=AB(或者AB=2AM=2BM)直线的性质(1)直线公理:经过两个点有且只有一条直线。(2)过一点的直线有多数条。(3)直线是是向两方面无限延长的,无端点,不行度量,不能比拟大小。(4)直线上有无穷多个点。(5)两条不同的直线至多有一个公共点。角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线围着它的端点旋转而成的。平角和周角:一条射线围着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边接着旋转,当它又和始边重合时,所形成的角叫做周角。角的表示:用数字表示单独的角,如1,2,3等。用小写的希腊字母表示单独的一个角,如,等。用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如

    注意事项

    本文(人教版七年级第一学期数学期末总复习知识点汇总1.docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开