沪科版八年级一次函数知识点及经典例题培优.docx
一次函数学问点及经典例题培优题型一、点的坐标方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标一样,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标一样,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A(m,n)在第二象限,则点(|m|,-n)在第_象限;2、 若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为_;3、 已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_,b=_;若A,B关于y轴对称,则a=_,b=_;若若A,B关于原点对称,则a=_,b=_;4、 若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第_象限。题型二、关于点的间隔 的问题方法:点到x轴的间隔 用纵坐标的肯定值表示,点到y轴的间隔 用横坐标的肯定值表示; 随意两点的间隔 为; 若ABx轴,则的间隔 为; 若ABy轴,则的间隔 为; 点到原点之间的间隔 为1、 点B(2,-2)到x轴的间隔 是_;到y轴的间隔 是_;2、 点C(0,-5)到x轴的间隔 是_;到y轴的间隔 是_;到原点的间隔 是_;3、 点D(a,b)到x轴的间隔 是_;到y轴的间隔 是_;到原点的间隔 是_;4、 已知点P(3,0),Q(-2,0),则PQ=_,已知点,则MQ=_; ,则EF两点之间的间隔 是_;已知点G(2,-3)、H(3,4),则G、H两点之间的间隔 是_;5、 两点(3,-4)、(5,a)间的间隔 是2,则a的值为_;6、 已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且ACB=90°,则C点坐标为_.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b是常数,k0),那么y叫做x的一次函数,特殊的,当b=0时,一次函数就成为y=kx(k是常数,k0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。A与B成正比例óA=kB(k0)1、当k_时,是一次函数;2、当m_时,是一次函数;3、当m_时,是一次函数;4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为_;题型四、函数图像及其性质方法:函数图象性质经过象限变更规律y=kx+b(k、b为常数,且k0)k0b0b=0b0k0b0b=0b0一次函数y=kx+b(k0)中k、b的意义: k(称为斜率)表示直线y=kx+b(k0) 的倾斜程度;b(称为截距)表示直线y=kx+b(k0)与y轴交点的 ,也表示直线在y轴上的 。 同一平面内,不重合的两直线 y=k1x+b1(k10)与 y=k2x+b2(k20)的位置关系:当 时,两直线平行。 当 时,两直线垂直。 当 时,两直线相交。 当 时,两直线交于y轴上同一点。 特殊直线方程: X轴 : 直线 Y轴 : 直线 与X轴平行的直线 与Y轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y5x+6,y的值随x值的减小而_。2、对于函数, y的值随x值的_而增大。 3、一次函数 y=(6-3m)x(2n4)不经过第三象限,则m、n的范围是_。4、直线y=(6-3m)x(2n4)不经过第三象限,则m、n的范围是_。5、已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第_象限。6、无论m为何值,直线y=x+2m与直线y=-x+4的交点不行能在第_象限。7、已知一次函数 (1)当m取何值时,y随x的增大而减小? (2)当m取何值时,函数的图象过原点?题型五、待定系数法求解析式方法:根据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k0)的解析式。 已知是直线或一次函数可以设y=kx+b(k0); 若点在直线上,则可以将点的坐标代入解析式构建方程。1、若函数y=3x+b经过点(2,-6),求函数的解析式。2、直线y=kx+b的图像经过A(3,4)与点B(2,7),3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。4、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。5、若一次函数y=kx+b的自变量x的取值范围是-2x6,相应的函数值的范围是-11y9,求此函数的解析式。6、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。7、已知直线y=kx+b与直线y= -3x+7关于x轴对称,求k、b的值。8、已知直线y=kx+b与直线y= -3x+7关于原点对称,求k、b的值。题型六、平移方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的平移,平移不变更斜率k,则将平移后的点代入解析式求出b即可。直线y=kx+b向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。1. 直线y=5x-3向左平移2个单位得到直线 。2. 直线y=-x-2向右平移2个单位得到直线 3. 直线y=x向右平移2个单位得到直线 4. 直线y=向左平移2个单位得到直线 5. 直线y=2x+1向上平移4个单位得到直线 6. 直线y=-3x+5向下平移6个单位得到直线 7. 直线向上平移1个单位,再向右平移1个单位得到直线 。8. 直线向下平移2个单位,再向左平移1个单位得到直线_。9. 过点(2,-3)且平行于直线y=2x的直线是_ _。10. 过点(2,-3)且平行于直线y=-3x+1的直线是_.11把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是_;12直线m:y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n上,则a=_;题型七、交点问题及直线围成的面积问题方法:两直线交点坐标必满意两直线解析式,求交点就是联立两直线解析式求方程组的解;困难图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;1、 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。2、 已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB(1) 求两个函数的解析式;(2)求AOB的面积;3、 已知直线m经过两点(1,6)、(-3,-2),它与x轴、y轴的交点式B、A,直线n过点(2,-2),且与y轴交点的纵坐标是-3,它与x轴、y轴的交点是D、C;(1) 分别写出两条直线解析式,并画草图;(2) 计算四边形ABCD的面积;(3) 若直线AB与DC交于点E,求BCE的面积。4、 如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,AOP的面积为6;(1) 求COP的面积;(2) 求点A的坐标及p的值;(3) 若BOP与DOP的面积相等,求直线BD的函数解析式。5、已知:经过点(-3,-2),它与x轴,y轴分别交于点B、A,直线经过点(2,-2),且与y轴交于点C(0,-3),它与x轴交于点D (1)求直线的解析式; (2)若直线与交于点P,求的值。6. 如图,已知点A(2,4),B(-2,2),C(4,0),求ABC的面积。