欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    初三数学圆知识点复习专题经典.docx

    • 资源ID:34919878       资源大小:479.29KB        全文页数:9页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    初三数学圆知识点复习专题经典.docx

    圆章节学问点复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的间隔 等于定长的点的集合; 2、圆的外部:可以看作是到定点的间隔 大于定长的点的集合; 3、圆的内部:可以看作是到定点的间隔 小于定长的点的集合轨迹形式的概念: 1、圆:到定点的间隔 等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;补充2、垂直平分线:到线段两端间隔 相等的点的轨迹是这条线段的垂直平分线也叫中垂线; 3、角的平分线:到角两边间隔 相等的点的轨迹是这个角的平分线; 4、到直线的间隔 相等的点的轨迹是:平行于这条直线且到这条直线的间隔 等于定长的两条直线; 5、到两条平行线间隔 相等的点的轨迹是:平行于这两条平行线且到两条直线间隔 都相等的一条直线。二、点及圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;三、直线及圆的位置关系1、直线及圆相离 无交点;2、直线及圆相切 有一个交点;3、直线及圆相交 有两个交点;四、圆及圆的位置关系外离图1 无交点 ;外切图2 有一个交点 ;相交图3 有两个交点 ;内切图4 有一个交点 ;内含图5 无交点 ; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧; 2弦的垂直平分线经过圆心,并且平分弦所对的两条弧; 3平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: 是直径 弧弧 弧弧中随意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。 即:在中, 弧弧例题1、 根本概念1下面四个命题中正确的一个是 A平分一条直径的弦必垂直于这条直径 B平分一条弧的直线垂直于这条弧所对的弦C弦的垂线必过这条弦所在圆的圆心 D在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心2以下命题中,正确的选项是A过弦的中点的直线平分弦所对的弧 B过弦的中点的直线必过圆心C弦所对的两条弧的中点连线垂直平分弦,且过圆心 D弦的垂线平分弦所对的弧例题2、垂径定理1、 在直径为52cm的圆柱形油槽内装入一些油后,截面如下图,假如油的最大深度为16cm,那么油面宽度AB是_cm.2、在直径为52cm的圆柱形油槽内装入一些油后,假如油面宽度是48cm,那么油的最大深度为_cm.3、如图,在中,弦,且,垂足为,于,于.1求证:四边形是正方形.2假设,求圆心到弦和的间隔 .4、:ABC内接于O,AB=AC,半径OB=5cm,圆心O到BC的间隔 为3cm,求AB的长5、如图,F是以O为圆心,BC为直径的半圆上随意一点,A是的中点,ADBC于D,求证:AD=BF.例题3、度数问题1、:在中,弦,点到的间隔 等于的一半,求:的度数和圆的半径. 2、:O的半径,弦AB、AC的长分别是、.求的度数。例题4、相交问题如图,O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,BED=30°,求CD的长.ABDCEO例题5、平行问题在直径为50cm的O中,弦AB=40cm,弦CD=48cm,且ABCD,求:AB及CD之间的间隔 .例题6、同心圆问题如图,在两个同心圆中,大圆的弦AB,交小圆于C、D两点,设大圆和小圆的半径分别为.求证:.例题7、平行及相像:如图,是的直径,是弦,于.求证:.六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,那么可以推出其它的3个结论,即:; 弧弧七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角 2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在中,、都是所对的圆周角 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或 是直径推论3:假设三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中, 是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。【例1】用直角钢尺检查某一工件是否恰好是半圆环形,依据图形3-3-19所表示的情形,四个工件哪一个确定是半圆环形? 【例2】如图,O中,AB为直径,AB=10cm,弦AC=6cm,ACB的平分线交O于D,求BC、AD和BD的长【例3】如下图,AB为O的直径,AC为弦,ODBC,交AC于D,BC=4cm1求证:ACOD; 2求OD的长; 3假设2sinA1=0,求O的直径【例4】四边形ABCD中,ABDC,BC=b,AB=AC=AD=a,如图,求BD的长【例5】如图1,AB是半O的直径,过A、B两点作半O的弦,当两弦交点恰好落在半O上C点时,那么有AC·ACBC·BC=AB21如图2,假设两弦交于点P在半O内,那么AP·ACBP·BD=AB2是否成立?请说明理由2如图3,假设两弦AC、BD的延长线交于P点,那么AB2=参照1填写相应结论,并证明你填写结论的正确性八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中, 四边形是内接四边形 例1、如图7-107,O中,两弦ABCD,M是AB的中点,过M点作弦DE求证:E,M,O,C四点共圆九、切线的性质及断定定理1切线的断定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不行 即:且过半径外端 是的切线2性质定理:切线垂直于过切点的半径如上图 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推确定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最终一个。十、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:、是的两条切线 平分利用切线性质计算线段的长度例1:如图,:AB是O的直径,P为延长线上的一点,PC切O于C,CDAB于D,又PC=4,O的半径为3求:OD的长利用切线性质计算角的度数例2:如图,:AB是O的直径,CD切O于C,AECD于E,BC的延长线及AE的延长线交于F,且AF=BF求:A的度数利用切线性质证明角相等例3:如图,:AB为O的直径,过A作弦AC、AD,并延长及过B的切线交于M、N求证:MCN=MDN利用切线性质证线段相等例4:如图,:AB是O直径,COAB,CD切O于D,AD交CO于E求证:CD=CE利用切线性质证两直线垂直例5:如图,:ABC中,AB=AC,以AB为直径作O,交BC于D,DE切O于D,交AC于E求证:DEAC十一、圆幂定理1相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点, 2推论:假如弦及直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在中,直径, 3切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线及圆交点的两条线段长的比例中项。即:在中,是切线,是割线 4割线定理:从圆外一点引圆的两条割线,这一点到每条割线及圆的交点的两条线段长的积相等如上图。即:在中,、是割线 例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。例2.O中的两条弦AB及CD相交于E,假设AE6cm,BE2cm,CD7cm,那么CE_cm。图2例3.如图3,P是O外一点,PC切O于点C,PAB是O的割线,交O于A、B两点,假如PA:PB1:4,PC12cm,O的半径为10cm,那么圆心O到AB的间隔 是_cm。图3例4.如图4,AB为O的直径,过B点作O的切线BC,OC交O于点E,AE的延长线交BC于点D,1求证:;2假设ABBC2厘米,求CE、CD的长。图4例5.如图5,PA、PC切O于A、C,PDB为割线。求证:AD·BCCD·AB图5例6.如图6,在直角三角形ABC中,A90°,以AB边为直径作O,交斜边BC于点D,过D点作O的切线交AC于E。图6 求证:BC2OE。十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:垂直平分。即:、相交于、两点 垂直平分十三、圆的公切线两圆公切线长的计算公式:1公切线长:中,;2外公切线长:是半径之差; 内公切线长:是半径之和 。十四、圆内正多边形的计算1正三角形 在中是正三角形,有关计算在中进展:;2正四边形同理,四边形的有关计算在中进展,:3正六边形同理,六边形的有关计算在中进展,.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:1弧长公式:;2扇形面积公式: :圆心角 :扇形多对应的圆的半径 :扇形弧长 :扇形面积2、圆柱: 1圆柱侧面绽开图 =2圆柱的体积:3 .圆锥侧面绽开图1=2圆锥的体积:

    注意事项

    本文(初三数学圆知识点复习专题经典.docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开