高三数学一轮复习精品资料基础知识归纳整理.docx
高三数学一轮复习:根底学问归纳第一局部 集合1.理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点? 2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题详细化、形象化、直观化,然后利用数形结合的思想方法解决3.(1) 元素及集合的关系:,.(2)德摩根公式: .(3)留意:探讨的时候不要遗忘了的状况.(4)集合的子集个数共有 个;真子集有1个;非空子集有1个;非空真子集有2个.4是任何集合的子集,是任何非空集合的真子集.第二局部 函数及导数1映射:留意: 第一个集合中的元素必需有象;一对一或多对一.2函数值域的求法:分析法 ;配方法 ;判别式法 ;利用函数单调性 ;换元法 ;利用均值不等式 ; 利用数形结合或几何意义(斜率、间隔 、肯定值的意义等);利用函数有界性(、等);平方法; 导数法3复合函数的有关问题:(1)复合函数定义域求法: 若f(x)的定义域为a,b,则复合函数fg(x)的定义域由不等式a g(x) b解出 若fg(x)的定义域为a,b,求 f(x)的定义域,相当于xa,b时,求g(x)的值域.(2)复合函数单调性的断定:首先将原函数分解为根本函数:内函数及外函数分别探讨内、外函数在各自定义域内的单调性依据“同性则增,异性则减”来推断原函数在其定义域内的单调性.4分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5函数的奇偶性:函数的定义域关于原点对称是函数具有奇偶性的必要条件是奇函数;是偶函数.奇函数在0处有定义,则在关于原点对称的单调区间内:奇函数有一样的单调性,偶函数有相反的单调性若所给函数的解析式较为困难,应先等价变形,再推断其奇偶性6函数的单调性:单调性的定义:在区间上是增函数当时有;在区间上是减函数当时有;单调性的断定:定义法:一般要将式子化为几个因式作积或作商的形式,以利于推断符号;导数法(见导数局部);复合函数法;图像法注:证明单调性主要用定义法和导数法。7函数的周期性:(1)周期性的定义:对定义域内的随意,若有 (其中为非零常数),则称函数为周期函数,为它的一个周期。全部正周期中最小的称为函数的最小正周期。如没有特殊说明,遇到的周期都指最小正周期。(2)三角函数的周期: ; ; ;(3)及周期有关的结论:或 的周期为8根本初等函数的图像及性质:.指数函数:;对数函数:;幂函数: ( ;正弦函数:;余弦函数: ;(6)正切函数:;一元二次函数:(a0);其它常用函数: 正比例函数:;反比例函数:;函数.分数指数幂:;(以上,且). .; ; .对数的换底公式:.对数恒等式:.9二次函数:解析式:一般式:;顶点式:,为顶点;零点式: (a0).二次函数问题解决需考虑的因素:开口方向;对称轴;端点值;及坐标轴交点;判别式;两根符号。二次函数的图象的对称轴方程是,顶点坐标是。10函数图象: 图象作法 :描点法 (特殊留意三角函数的五点作图)图象变换法 导数法图象变换: 平移变换:),左“+”右“”; ) 上“+”下“”; 对称变换:););) ; ); 翻折变换:)(去左翻右)y轴右不动,右向左翻(在左侧图象去掉);)(留上翻下)x轴上不动,下向上翻(|在下面无图象);11函数图象(曲线)对称性的证明:(1)证明函数图像的对称性,即证明图像上随意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数及图象的对称性,即证明图象上随意点关于对称中心(对称轴)的对称点在的图象上,反之亦然。注:曲线C1:f(x,y)=0关于原点(0,0)的对称曲线C2方程为:f(x,y)=0;曲线C1:f(x,y)=0关于直线x=0的对称曲线C2方程为:f(x, y)=0; 曲线C1:f(x,y)=0关于直线y=0的对称曲线C2方程为:f(x, y)=0;曲线C1:f(x,y)=0关于直线y=x的对称曲线C2方程为:f(y, x)=0f(a+x)=f(bx) (xR)y=f(x)图像关于直线x=对称;特殊地:f(a+x)=f(ax) (xR)y=f(x)图像关于直线x=a对称.的图象关于点对称.特殊地:的图象关于点对称.函数及函数的图象关于直线对称; 函数及函数的图象关于直线对称。12函数零点的求法:干脆法(求的根);图象法;二分法.(4)零点定理:若y=f(x)在a,b上满意f(a)·f(b)<0 , 则y=f(x)在(a,b)内至少有一个零点。13导数: 导数定义:f(x)在点x0处的导数记作常见函数的导数公式: ; 。导数的四则运算法则:(理科)复合函数的导数:导数的应用: 利用导数求切线:留意:)所给点是切点吗?)所求的是“在”还是“过”该点的切线?利用导数推断函数单调性:i)是增函数;ii)为减函数;iii)为常数; 利用导数求极值:)求导数;)求方程的根;)列表得极值。 利用导数求最大值及最小值:)求极值;)求区间端点值(假如有);)比拟得最值。第三局部 三角函数、三角恒等变换及解三角形1角度制及弧度制的互化:弧度,弧度,弧度弧长公式:;扇形面积公式:。2三角函数定义:角终边上任一点(非原点)P,设 则:3三角函数符号规律:一全正,二正弦,三正切,四余弦;(简记为“全s t c”)4诱导公式记忆规律:“奇变偶不变,符号看象限”5 对称轴:令,得 对称中心:; 对称轴:令,得;对称中心:; 周期公式:函数及的周期 (A、为常数,且A0).函数的周期 (A、为常数,且A0).6同角三角函数的根本关系:7三角函数的单调区间及对称性: 的单调递增区间为,单调递减区间为,对称轴为,对称中心为.的单调递增区间为,单调递减区间为,对称轴为,对称中心为.的单调递增区间为,对称中心.8两角和及差的正弦、余弦、正切公式: ;.;.=(其中,协助角所在象限由点所在的象限确定, ).9二倍角公式:.(升幂公式).(降幂公式).10正、余弦定理:正弦定理: (是外接圆直径)注:;。余弦定理:等三个; 等三个。11.几个公式:三角形面积公式:(分别表示a、b、c边上的高);.内切圆半径r=; 外接圆直径2R=第四局部 立体几何1三视图及直观图:画三视图要求:正视图及俯视图长对正;正视图及侧视图高平齐;侧视图及俯视图宽相等。 斜二测画法画程度放置几何体的直观图的要领。2表(侧)面积及体积公式:柱体:外表积:S=S侧+2S底;侧面积:S侧=;体积:V=S底h 锥体:外表积:S=S侧+S底;侧面积:S侧=;体积:V=S底h:台体:外表积:S=S侧+S下底;侧面积:S侧=;体积:V=(S+)h;球体:外表积:S=;体积:V= .3位置关系的证明(主要方法):直线及直线平行:公理4;线面平行的性质定理;面面平行的性质定理。直线及平面平行:线面平行的断定定理;面面平行线面平行。平面及平面平行:面面平行的断定定理及推论;垂直于同始终线的两平面平行。直线及平面垂直:直线及平面垂直的断定定理;面面垂直的性质定理。平面及平面垂直:定义-两平面所成二面角为直角;面面垂直的断定定理。注:以上理科还可用向量法。4.求角:(步骤-.找或作角;.求角)异面直线所成角的求法:平移法:平移直线,构造三角形;用向量法直线及平面所成的角:干脆法(利用线面角定义);用向量法 5.结论:棱锥的平行截面的性质假如棱锥被平行于底面的平面所截,那么所得的截面及底面相像,截面面积及底面面积的比等于顶点到截面间隔 及棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相像多边形,相像多边形面积的比等于对应边的比的平方);相应小棱锥及小棱锥的侧面积的比等于顶点到截面间隔 及棱锥高的平方比长方体从一个顶点动身的三条棱长分别为a,b,c,则体对角线长为,全面积为2ab+2bc+2ca,体积V=abc。正方体的棱长为a,则体对角线长为,全面积为,体积V=。球及长方体的组合体: 长方体的外接球的直径是长方体的体对角线长. 球及正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.正四面体的性质:设棱长为,则正四面体的: 高:;对棱间间隔 :;内切球半径:;外接球半径:。第五局部 直线及圆1斜率公式:,其中、.直线的方向向量,则直线的斜率为=.2.直线方程的五种形式:(1)点斜式: (直线过点,且斜率为)(2)斜截式:(为直线在轴上的截距).(3)两点式:(、 ,).(4)截距式:(其中、分别为直线在轴、轴上的截距,且).(5)一般式:(其中A、B不同时为0).3两条直线的位置关系:(1)若,,则: ,; .(2)若,则: 且;.4求解线性规划问题的步骤是:(1)列约束条件;(2)作可行域,写目的函数;(3)确定目的函数的最优解。5两个公式:点P(x0,y0)到直线Ax+By+C=0的间隔 :;两条平行线Ax+By+C1=0及 Ax+By+C2=0的间隔 6圆的方程:标准方程: ; 。一般方程: (注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆A=C0且B=0且D2+E24AF>07圆的方程的求法:待定系数法;几何法。 8点、直线及圆的位置关系:(主要驾驭几何法)点及圆的位置关系:(表示点到圆心的间隔 )点在圆上;点在圆内;点在圆外。直线及圆的位置关系:(表示圆心到直线的间隔 )相切;相交;相离。圆及圆的位置关系:(表示圆心距,表示两圆半径,且)相离;外切;相交;内切;内含。9直线及圆相交所得弦长第六局部 圆锥曲线1定义:椭圆:;双曲线:; 抛物线:|MF|=d2结论 :直线及圆锥曲线相交的弦长公式:若弦端点为,则,或, 或.注:抛物线:x1+x2+p;通径(最短弦):)椭圆、双曲线:;)抛物线:2p.过两点的椭圆、双曲线标准方程可设为:(同时大于0时表示椭圆;时表示双曲线);当点及椭圆短轴顶点重合时最大; 双曲线中的结论:双曲线(a>0,b>0)的渐近线:; 共渐进线的双曲线标准方程可设为为参数, 0);双曲线为等轴双曲线渐近线互相垂直;焦点三角形问题求解:利用圆锥曲线定义和余弦定理联立求解。3直线及圆锥曲线问题解法:干脆法(通法):联立直线及圆锥曲线方程,构造一元二次方程求解。留意以下问题:联立的关于“”还是关于“”的一元二次方程?直线斜率不存在时考虑了吗?判别式验证了吗?设而不求(点差法-代点作差法):-处理弦中点问题步骤如下:设点A(x1,y1)、B(x2,y2);作差得;解决问题。4求轨迹的常用方法:(1)定义法:利用圆锥曲线的定义; (2)干脆法(列等式);(3)代入法(又称相关点法或坐标转移法);(4)待定系数法; (5)消参法;(6)交轨法;(7)几何法。第七局部 平面对量1.平面上两点间的间隔 公式:,其中A,B.2.向量的平行及垂直: 设=,=,且,则:=; ()·=0.3.a·b=|a|b|cos<a,b>=xx2+y1y2; 注:|a|cos<a,b>叫做a在b方向上的投影;|b|cos<a,b>叫做b在a方向上的投影;a·b的几何意义:a·b等于|a|及|b|在a方向上的投影|b|cos<a,b>的乘积。4.cos<a,b>=;5.三点共线的充要条件:P,A,B三点共线。 第八局部 数列1定义:等比数列 2等差、等比数列性质: 等差数列 等比数列通项公式 前n项和 性质 an=am+ (nm)d, an=amqn-m; m+n=p+q时am+an=ap+aq m+n=p+q时aman=apaq 成AP 成GP 成AP, 成GP,3常见数列通项的求法:an=S1 (n=1)SnSn-1 (n2)定义法(利用AP,GP的定义);累加法(型);公式法: 累乘法(型);待定系数法(型)转化为(6)间接法(例如:);(7)(理科)数学归纳法。4前项和的求法:分组求和法;错位相减法;裂项法。5等差数列前n项和最值的求法:最大值 ;利用二次函数的图象及性质。 第九局部 不等式1均值不等式:留意:一正二定三相等;变形:。2极值定理:已知都是正数,则有:(1)假如积是定值,那么当时和有最小值;(2)假如和是定值,那么当时积有最大值.3.解一元二次不等式:若,则对于解集不是全集或空集时,对应的解集为“大两边,小中间”.如:当,;.4.含有肯定值的不等式:当时,有:; 或.5.分式不等式:(1); (2);(3) ; (4).6.指数不等式及对数不等式 (1)当时,;.(2)当时,;7不等式的性质:;; 第十局部 复数1概念:z=a+biRb=0 (a,bR)z= z2 0;z=a+bi是虚数b 0(a,bR);z=a+bi是纯虚数a=0且b 0(a,bR)z0(z 0)z2<0;a+bi=c+dia=c且c=d(a,b,c,dR);2复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,dR),则:(1) z 1± z2 = (a + b) ± (c + d)i; z1.z2 = (a+bi)·(c+di)(ac-bd)+ (ad+bc)i;= (z2 0) ;3几个重要的结论:;性质:T=4;4模的性质:;。5.实系数一元二次方程的解: 若,则;若,则;若,它在实数集内没有实数根;在复数集内有且仅有两个共轭复数根.第十一局部 概率1事务的关系:事务B包含事务A:事务A发生,事务B肯定发生,记作;事务A及事务B相等:若,则事务A及B相等,记作A=B;并(和)事务:某事务发生,当且仅当事务A发生或B发生,记作(或);并(积)事务:某事务发生,当且仅当事务A发生且B发生,记作(或) ;事务A及事务B互斥:若为不行能事务(),则事务A及互斥;对立事务:为不行能事务,为必定事务,则A及B互为对立事务。2概率公式:互斥事务(有一个发生)概率公式:P(A+B)=P(A)+P(B);古典概型:;几何概型: ;第十二局部 统计及统计案例1抽样方法:简洁随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的时机相等,就称这种抽样为简洁随机抽样。注:每个个体被抽到的概率为;常用的简洁随机抽样方法有:抽签法;随机数表法。系统抽样:当总体个数较多时,可将总体平衡的分成几个局部,然后依据预先制定的规则,从每一个局部抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。注:步骤:编号;分段;在第一段采纳简洁随机抽样方法确定起始的个体编号;按预先制定的规则抽取样本。分层抽样:当已知总体有差异比拟明显的几局部组成时,为使样本更充分的反映总体的状况,将总体分成几局部,然后依据各局部占总体的比例进展抽样,这种抽样叫分层抽样。注:每个局部所抽取的样本个体数=该局部个体数注:以上三种抽样的共同特点是:在抽样过程中每个个体被抽取的概率相等2频率分布直方图及茎叶图:用直方图反映样本的频率分布规律的直方图称为频率分布直方图。当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间局部像植物的茎,两边像植物茎上长出来的叶子,这种表示数据的图叫做茎叶图。3总体特征数的估计:样本平均数;样本方差 ;样本标准差= 3相关系数(断定两个变量线性相关性): 注:>0时,变量正相关; <0时,变量负相关;当 越接近于1,两个变量的线性相关性越强;当 越接近于0时,两个变量之间几乎不存在线性相关关系。4 回来直线方程 ,其中 第十三局部 算法初步1程序框图:图形符号: 终端框(起止框); 输入、输出框; 处理框(执行框); 推断框; 流程线 ;程序框图分类:依次构造: 条件构造: 循环构造: r =0 否 求n除以i的余数 输入n 是 n不是质数 n是质数 i=i+1 i=2 in或r=0 否 是注:循环构造分为:当型(while型) 先推断条件,再执行循环体;直到型(until型)先执行一次循环体,再推断条件。2根本算法语句:输入语句 INPUT “提示内容”;变量 ;输出语句:PRINT “提示内容”;表达式 赋值语句: 变量=表达式 条件语句: IF 条件THEN IF条件 THEN 语句体 语句体1 END IF ELSE 语句体2 END IF循环语句:当型: 直到型: WHILE条件 DO 循环体 循环体 WEND LOOP UNTIL 条件 第十四局部 常用逻辑用语及推理证明1充要条件的推断:(1)定义法-正、反方向推理留意区分:“甲是乙的充分条件(甲乙)”及“甲的充分条件是乙(乙甲)”(2)利用集合间的包含关系:例如:若,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件。2逻辑联结词:且(and) :命题形式 pq; p q pq pq p或(or): 命题形式 pq; 真 真 真 真 假非(not):命题形式p . 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真3四种命题的互相关系原命题互逆逆命题若则若则互互互为为互否否逆逆否 否否命题逆否命题若非则非互逆若非则非4。四种命题:原命题:若p则q; 逆命题:若q则p;否命题:若p则q; 逆否命题:若q则p注:原命题及逆否命题等价;逆命题及否命题等价。5.全称量词及存在量词全称量词-“全部的”、“随意一个”等,用表示; 全称命题p:; 全称命题p的否认p:。存在量词-“存在一个”、“至少有一个”等,用表示; 特称命题p:; 特称命题p的否认p:;6.常见结论的否认形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有()个小于不小于至多有个至少有()个对全部,成立存在某,不成立或且对任何,不成立存在某,成立且或第十五局部 推理及证明1推理:合情推理:归纳推理和类比推理都是依据已有事实,经过视察、分析、比拟、联想,在进展归纳、类比,然后提出猜测的推理,我们把它们称为合情推理。归纳推理:由某类事物的局部对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理,简称归纳。注:归纳推理是由局部到整体,由个别到一般的推理。类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。注:类比推理是特殊到特殊的推理。演绎推理:从一般的原理动身,推出某个特殊状况下的结论,这种推理叫演绎推理。注:演绎推理是由一般到特殊的推理。“三段论”是演绎推理的一般形式,包括:大前提-已知的一般结论;小前提-所探讨的特殊状况; 结论-依据一般原理,对特殊状况得出的推断。2证明:干脆证明 综合法:一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最终推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。分析法:一般地,从要证明的结论动身,逐步寻求使它成立的充分条件,直至最终,把要证明的结论归结为断定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。(2)间接证明(反证法):一般地,假设原命题不成立,经过正确的推理,最终得出冲突,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。留意答题技巧训练1.技术矫正:考试中时间安排及处理技巧特别重要,有几点须要必需提示同学们留意: 按序答题,先易后难.肯定要选择熟题先做、有把握的题目先做. 不能纠缠在某一题、某一细微环节上,该跳过去就先跳过去,千万不能感觉自己被卡住,这样会心慌,影响下面做题的心情. 避开“回头想”现象,肯定要争取一步到位,不要先做一下,等回过头来再想再检查,高考时间较惊慌,或许待会儿根本顾不上再来思索. 做某一选择题时假如没有十足的把握,初步答案或猜估的答案必需先在卷子上做好标记,有时间再推敲,不要空答案,否则要是时间来不及瞎写答案只能增加错误的概率.2.标准化提示:这是获得高分的根本保证.标准化包括:解题过程有必要的文字说明或叙述,留意解完后再看一下题目,看你的解答是否符合题意,谨防因解题不全或失误,答题或书写不标准而失分.总之,要吃透题“情”,合理安排时间,做到一准、二快、三标准.特殊是要留意解题结果的标准化. 解及解集:方程的结果一般用解表示(除非强调求解集);不等式、三角方程的结果一般用解集(集合或区间)表示.三角方程的通解中必需加.在写区间或集合时,要正确地书写圆括号、方括号或大括号,区间的两端点之间、集合的元素之间用逗号隔开. 带单位的计算题或应用题,最终结果必需带单位,解题完毕后肯定要写上符合题意的“答”. 分类探讨题,一般要写综合性结论. 任何结果要最简.如等.排列组合题,无特殊声明,要求出数值. 函数问题一般要注明定义域(特殊是反函数). 参数方程化一般方程,要考虑消参数过程中最终的限制范围. 轨迹问题:轨迹及轨迹方程的区分:轨迹方程一般用一般方程表示,轨迹则须要说明图形形态. 有限制条件的必需注明轨迹中图形的范围或轨迹方程中或的范围. 分数线要划横线,不用斜线.3.考前寄语:先易后难,先熟后生;一慢一快:审题要慢,做题要快;不能小题难做,小题大做, 而要小题小做,小题巧做;我易人易我不大意,我难人难我不畏难;考试不怕题不会,就怕会题做不对;根底题拿满分,中档题拿足分,难题力争多得分,似曾相识题力争不失分;对数学解题有困难的考生的建议:立足中下题目,力争高上程度,有时“放弃”是一种策略.