一元一次不等式组教案(公开课教案).docx
§9.3 一元一次不等式组 肖慧教学目的学问与技能:1、理解一元一次不等式组及其解集的概念。2、会利用数轴求不等式组的解集。过程与方法:1、培育学生分析实际问题,抽象出数学关系的实力。2、培育学生初步数学建模的实力。情感看法价值观:加深学生对数形结合的作用的理解,让学生体会数学解题的直观性和简洁性的数学美。感受探究的乐趣和胜利的体验,使学生养成独立思索的好习惯。教学重难点重点:不等式组的解法及其步骤。难点:确定两个不等式解集的公共局部。教法与学法分析教法:启发式、探讨式和讲练结合的教学方法。学法:理论、比拟、探究的学习方式。教学课型 新授课教学用具多媒体课件教学过程一、复习引入 一元一次不等式的解法我们已经全部讲完,如今复习一下前面的内容。1、不等式的三个根本性质是什么?2、一元一次不等式的解法是怎样的?3、情境引入:这个星期的星期天是我母亲的生日,肖教师想买一束康乃馨送给妈妈.要求:这束花不低于20 元,又少于40元假如你是花店售货员,你会拿什么价格的康乃馨给我选择呢二、讲授新知探究新知:题中一共有两种数量关系,讲解时应留意引导学生自主探究发觉。 题中的应同时满意两个不等式,从而引出一元一次不等式组的概念:把两个一元一次不等式合在一起,就得到一个一元一次不等式组。 同时满意两个不等式的未知数,既是两个不等式解集的公共局部,要找出公共局部,就要利用数轴,在此要引导学生重视数轴的作用,并指导学生在数轴如何视察数轴上对应解集的范围。01020304050记着20X<40(引导发觉,此就是不等式组的解集。)不等式解集的概念:不等式组中的几个不等式解集的公共局部。由此,教师可以引导学生自己总结出解一元一次不等式组的一般步骤。学生答复后教师总结步骤:分别求出每个不等式的解集;找出它们的公共局部。三、例题讲解 教师提出问题,有了上面的铺垫,我们来完好的解一元一次不等式组。例1 解不等式组(1) (2)以上两个例题第一个有解,第二个无解,第一个例题教师可以让学生先解完再给出解题过程,本例是按标准格式完好地解答了一个一元一次不等式组,要求学生做作业时按此格式书写。第二个不等式组的解法中,学生会先求出两个不等式的解集,再在数轴上表示出每个不等式的解集,假如每个不等式的解集有公共局部,就是该不等式组的解,公共局部就是它的解集;假如每个不等式的解集没有公共局部,就说该不等式组无解。解:(1)解不等式,得 解不等式,得 把不等式和 的解集在数轴上表示出来:012345则原不等式的解集为(2)解不等式,得 解不等式,得 把不等式和 的解集在数轴上表示出来:0246810在这里引导学生发觉,没有公共局部,即无解。四、 课堂练习第一组第二组第三组第四组这个表格教师应尽量引导学生自主探究完成,教师最终做出总结:同大取大,同小取小,大小小大中间找,大大小小找不了。2、 学以致用(1)比一比:看谁反响快 运用规律求下列不等式组的解集 (2)、依据数轴说出不等式组的解集-12-14 (4) (3)(2)(1)解集: 解集: 解集: 解集: 五、课时小结 学生学习了一节后有自己的收获,教师应让学生首先总结,教师再做补充。(一)概念1、由几个一元一次不等式所组成的不等式组叫做一元一次不等式组。 2、几个一元一次不等式的解集的公共局部,叫做由它们所组成的一元一次不等式组的解集。3、求不等式组的解集的过程,叫做解不等式组。(二)解简洁一元一次不等式组的方法:1、求不等式组中各个不等式的解集。2、利用数轴找出两个不等式的公共局部,即求出了不等式的解集。(三)本节课的思想方法(1)类比的思想 (2)数形相结合的思想六、总结升华 设a、b是已知实数且ab,那么不等式组表一:不等式组解集不等式组数轴表示解集(即公共局部)babababa无 解这个表格教师应尽量引导学生自主探究完成,教师最终做出总结:皆大取大,皆小取小,大小小大取中间,大大小小是无解。七、作业布置必做:课本129练习板书设计表二 板书设计表§8.3 一元一次不等式组问题3分析引导利用数轴例题讲解(1)、(2)、总结升华表一强化训练练习1练习2练习3作业布置