欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高三文科数学立体几何平行垂直问题专题复习(含答案).docx

    • 资源ID:34944311       资源大小:521.01KB        全文页数:14页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高三文科数学立体几何平行垂直问题专题复习(含答案).docx

    高三文科数学专题复习:立体几何平行、垂直问题【根底学问点】一、平行问题1 直线及平面平行的断定及性质定义断定定理性质性质定理图形条件a结论abaab2. 面面平行的断定及性质断定性质定义定理图形条件,a结论aba平行问题的转化关系:二、垂直问题一、直线及平面垂直1直线与平面垂直的定义:直线l及平面内的 都垂直,就说直线l及平面相互垂直2直线及平面垂直的断定定理及推论文字语言图形语言符号语言断定定理一条直线及一个平面内的两条相交直线都垂直,那么该直线及此平面垂直 推论假如在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面3直线及平面垂直的性质定理文字语言图形语言符号语言性质定理垂直于同一个平面的两条直线平行4.直线与平面垂直的常用性质直线垂直于平面,那么垂直于平面内随意直线垂直于同一个平面的两条直线平行垂直于同一条直线的两平面平行二、平面及平面垂直1平面及平面垂直的断定定理文字语言图形语言符号语言断定定理一个平面过另一个平面的垂线,那么这两个平面垂直2平面及平面垂直的性质定理文字语言图形语言符号语言性质定理两个平面垂直,那么一个平面内垂直于交线的直线垂直于另一个平面【典例探究】类型一、平行及垂直例1、如图,三棱锥中,为中点,为中点,且为正三角形。求证:平面;求证:平面平面;假设,求三棱锥的体积。ABCA1B1C1MN例2. 如图,三棱柱中,底面,分别是棱,中点. 求证:平面; 求证:平面;求三棱锥的体积【变式1】. 如图,三棱柱中,侧棱平面,为等腰直角三角形,且,分别是的中点。1求证:平面;2求证:平面;3设,求三棱锥的体积。二、线面平行及垂直的性质例3、如图4,在四棱锥中,平面平面,是等边三角形, 1求证:平面; 2求三棱锥的体积例4、如图,四棱锥PABCD中,平面ABCD,底面为正方形,BC=PD=2,E为PC的中点, I求证:; II求三棱锥CDEG的体积; IIIAD边上是否存在一点M,使得平面MEG。假设存在,求AM的长;否那么,说明理由。【变式2】直棱柱ABCD-A1B1C1D1底面ABCD是直角梯形,BADADC90°,AB2AD2CD2.()求证:AC平面BB1C1C;() A1B1上是否存一点P,使得DP及平面BCB1及平面ACB1都平行?证明你的结论.4422444正视图侧视图俯视图三、三视图及折叠问题例5、如图是一几何体的直观图、正视图、侧视图、俯视图。假设为的中点,求证:面;(1) 证明:面;(2) 求三棱锥的体积。ABEPDC例6.四边形是等腰梯形,如图1。现将沿折起,使得如图2,连结。I求证:平面平面;II试在棱上确定一点,使截面把几何体分成两部分的体积比;III在点满意II的状况下,推断直线是否平行于平面,并说明理由。图1图2【变式3】一个四棱锥的直观图与三视图如下列图所示,E为PD中点.I求证:PB/平面AEC;II求四棱锥的体积;假设F为侧棱PA上一点,且,那么为何值时,平面BDF.【变式4】如图1所示,正的边长为2a,CD是AB边上的高,E,F分别是AC,BC的中点。现将沿CD翻折,使翻折后平面ACD平面BCD如图21试推断翻折后直线AB及平面DEF的位置关系,并说明理由;2求三棱锥C-DEF的体积。四、立体几何中的最值问题例7.图4,A1A是圆柱的母线,AB是圆柱底面圆的直径, C是底面圆周上异于A,B的随意一点,A1A= AB=2.(1)求证: BC平面A1AC;(2)求三棱锥A1-ABC的体积的最大值.图4ABCA1例8. 如图,在交AC于 点D,现将1当棱锥的体积最大时,求PA的长;2假设点P为AB的中点,E为【变式5】如图3,在中,平面ABC,于E,于F,当改变时,求三棱锥体积的最大值。高三文科数学专题复习:立体几何平行、垂直问题答案【典例探究】例1解:,又为正三角形,且为中点, 又由1知 又 ,又,平面平面, 又,例2.证明:因为三棱柱中,底面又因为平面, 所以. 1分ABCA1B1C1MNG因为,是中点,所以. 2分因为, 3分所以平面 4分证明:取的中点,连结,因为,分别是棱,中点,所以,. 又因为,所以,.所以四边形是平行四边形. 6分所以. 7分因为平面,平面, 8分所以平面 9分由知平面. 10分所以. 13分变式1.1依据中点找寻平行线即可;2易证,在依据勾股定理的逆定理证明;3由于点是线段的中点,故点到平面的间隔 是点到平面间隔 的,求出高依据三棱锥的体积公式计算即可。【解析】1取中点,连接平行四边形,平面,平面,平面。 4分2等腰直角三角形中为斜边的中点,又直三棱柱,面面,面,设又面。 8分3由于点是线段的中点,故点到平面的间隔 是点到平面间隔 的。,所以三棱锥的高为;在中,所以三棱锥的底面面积为,故三棱锥的体积为。12分二、线面平行及垂直的性质例3.1证明:在中,由于, . 2分又平面平面,平面平面,平面,平面. 4分2解:过作交于.又平面平面, 平面 6分是边长为2的等边三角形, .由1知,在中,斜边边上的高为. 8分,. 10分. 14分例4、I证明:平面ABCD, 又ABCD是正方形,BCCD, PDICE=D, BC平面PCD又PC面PBC,PCBC II解:BC平面PCD,GC是三棱锥GDEC的高。E是PC的中点, III连结AC,取A C中点O,连结EO、GO,延长GO交AD于点M,那么PA/平面MEG。下面证明之E为PC的中点,O是AC的中点,EO/平面PA,又,PA/平面MEG在正方形ABCD中,O是AC中点, 所求AM的长为变式2.证明:()直棱柱ABCD-A1B1C1D1中,BB1平面ABCD,BB1AC.又BAD=ADC=90°,AB=2AD=2CD=2,AC=,CAB=45°,BC=,BCAC.又BB1BC=B,BB1,BC平面BB1C1C,AC平面BB1C1C.()存在点P,P为A1B1的中点。证明:由P为A1B1的中点,有PB1AB,且PB1=AB. 又DCAB,DC=AB,DCPB1,且DC=PB1,DCB1P为平行四边形,从而CB1DP.又CB1ACB1,DP面ACB1,DP面ACB1.同理,DP面BCB1.4422444正视图侧视图俯视图ABEPDC例5、1由几何体的三视图可知,底面是边长为4的正方形,面,为中点,又面。2取的中点,及的交点为,故为平行四边形,面。3变式3.解:由三视图得,四棱锥底面ABCD为菱形,棱锥的高为3,设,那么即是棱锥的高,底面边长是2,连接,分别是的中点,23过作-10分-12分-14分变式4.解:1推断:AB/平面DEF.2分M证明:因在中,E,F分别是AC,BC的中点,有EF/AB.5分又因AB平面DEF,EF平面DEF.6分所以AB/平面DEF.7分2过点E作EMDC于点M,面ACD面BCD,面ACD面BCDCD,而EM面ACD故EM平面BCD 于是EM是三棱锥E-CDF的高.9分又CDF的面积为EM11分故三棱锥C-DEF的体积为四、立体几何中的最值问题例7.图4ABCA1证明:C是底面圆周上异于A,B的随意一点,AB是圆柱底面圆的直径,BCAC, 2分AA1平面ABC,BCÌ平面ABC,AA1BC, 4分AA1AC=A,AA1Ì平面AA1 C,ACÌ平面AA1 C,BC平面AA1C. 6分(2)解法1:设AC=x,在RtABC中,(0<x<2) , 7分故(0<x<2),9分即. 11分0<x<2,0<x2<4,当x2=2,即时,三棱锥A1-ABC的体积的最大值为. 14分解法2: 在RtABC中,AC2+BC2=AB2=4, 7分 9分. 11分当且仅当 AC=BC 时等号成立,此时AC=BC=.例8.解:1设,那么 令 那么 单调递增极大值单调递减由上表易知:当时,有取最大值。证明:(2) 作得中点F,连接EF、FP 由得: 为等腰直角三角形, 所以.变式6. 解:因为平面ABC平面ABC,所以又因为,所以平面PAC,又平面PAC,所以,又,所以平面PBC,即。EF是AE在平面PBC上的射影,因为,所以,即平面AEF。在三棱锥中,所以,因为,所以因此,当时,获得最大值为。

    注意事项

    本文(高三文科数学立体几何平行垂直问题专题复习(含答案).docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开