欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中数学人教版必修5教案.docx

    • 资源ID:34949123       资源大小:247.56KB        全文页数:27页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学人教版必修5教案.docx

    1.1.1 正弦定理一、教学目的:1、通过对随意三角形边长和角度关系的探究,驾驭正弦定理的内容及其证明方法;2、会运用正弦定理与三角形内角和定理解三角形;二、教学重点:正弦定理的探究和证明及其根本应用; 教学难点:已知两边和其中一边的对角解三角形时推断解的个数;三、教学过程:1、引入在初中,我们知道三角形有大边对大角,小边对小角的边角关系. 能否把这种关系准确量化的表示呢?2、新课教学(1)直角三角形中,角与边的等式关系:在RtABC中,设BC=a,AC=b,AB=c, 依据锐角三角函数中正弦函数的定义,有,,则 在直角三角形ABC中, 思索:那么对于随意的三角形,以上关系式是否仍旧成立?(2)锐角三角形中,角与边的等式关系:当ABC是锐角三角形时,设边AB上的高是CD,依据随意角三角函数的定义,有CD=,则, 同理可得, 从而 (3) 探究:P3 钝角三角形中,角与边的等式关系:3、正弦定理:(1) 在一个三角形中,各边和它所对角的正弦的比相等,即存在正数k使,;(2) 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。已知三角形的随意两角及其一边可以求其他边;已知三角形的随意两边与其中一边的对角可以求其他角的正弦值。4、讲授例题:例1P3 在中,已知,cm,解三角形。例2P4 在中,已知cm,cm,解三角形。5、练习:课本P4 练习 1 2四、课堂小结:(1) 正弦定理(2) 正弦定理的应用范围1.1.2余弦定理一、教学目的:1、驾驭余弦定理;2、运用余弦定理解三角形。二、教学重点:余弦定理的发觉和证明过程; 教学难点:余弦定理的根本应用;三、教学过程:1、复习回忆:正弦定理: 2、引入:探究:P5 3、余弦定理的证明: 如图,设,那么,则 A = = C B = 从而 同理可证 。 4、余弦定理: 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的弦 的积的两倍。 即:; ; 。 5、余弦定理的变式: 6、余弦定理的根本应用:(1)已知三角形的随意两边及其夹角可以求第三边;(2)已知三角形的三条边可以求出三角.7、讲授例题:(1)例3 P7(2)例4 P7四、归纳小结:(1) 余弦定理(2)余弦定理的根本应用五、作业:课本P8 练习1,2;1.2应用举例(1)一、教学目的:运用正弦定理、余弦定理解决一些有关测量间隔 的实际问题;二、教学重点:实际问题中抽象出一个或几个三角形。 教学难点:建立数学模型,画出示意图。三、教学过程:1、复习回忆:正弦定理、余弦定理.2、引入:如何测量间隔 .3、新课教学:(1) 例1、如图,设A、B两点在河的两岸,要测量两点之间的间隔 ,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的间隔 是55m,BAC=,ACB=。求A、B两点的间隔 (准确到0.1m)(2) 例2、如图,A、B两点都在河的对岸(不行到达),设计一种测量A、B两点间间隔 的方法。分析:这是例1的变式题,探讨的是两个不行到达的点之间的间隔 测量问题。首先须要构造三角形,所以须要确定C、D两点。依据正弦定理中已知三角形的随意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的间隔 。(3)理解基线的概念4、课堂练习:课本P13 练习1,2四、归纳小结:运用正弦定理、余弦定理解决一些有关测量间隔 的实际问题五、作业:课本P13 练习 1,21.2应用举例(2)一、教学目的:运用正弦定理、余弦定理等解决有关物体高度测量的问题.二、教学重点:解决生活中的测量高度问题.教学难点:能视察较困难的图形,从中找到解决问题的关键条件.三、教学过程:1、引入:如何测量高度.2、新课教学:(1) 例3、AB是底部B不行到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。(2)例4、如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50。已知铁塔BC局部的高为27.3 m,求出山高CD(准确到1 m) (3)例5、如图,一辆汽车在一条程度的马路上向正东行驶,到A处时测得马路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.3、课堂练习:课本P15练习1,2,3四、归纳小结:运用正弦定理、余弦定理等解决有关物体高度测量的问题.五、作业:课本P15 练习 11.2应用举例(3)一、教学目的:运用正弦定理、余弦定理解决角度的问题。二、教学重点:找到已知条件和所求角的关系。 教学难点:敏捷运用正弦定理和余弦定理解关于角度的问题。三、教学过程:1、引入:如何测量角度。2、新课教学:例6、如图,一艘海轮从A动身,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B动身,沿北偏东32的方向航行54.0 n mile后到达海岛C.假如下次航行干脆从A动身到达C,此船应当沿怎样的方向航行,须要航行多少间隔 (角度准确到0.1,间隔 准确到0.01n mile)3、课堂练习:课本P16 练习 四、归纳小结:运用正弦定理、余弦定理解决角度的问题。1.2应用举例(4)一、教学目的:1、驾驭三角形的面积公式的简洁推导和应用;2、利用正弦定理、余弦定理来求证简洁的证明题;二、教学重点:推导三角形的面积公式。 教学难点:利用正弦定理、余弦定理来求证简洁的证明题;三、教学过程:1、引入:三角形的面积公式2、新课教学:(1)推导出三角形面积公式,S=absinC,S=bcsinA, S=acsinB(2) 例7、在ABC中,依据下列条件,求三角形的面积S(准确到0.1cm)(3) 例8、如图,在某市进展城市环境建立中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(4) 例9、在ABC中,求证:(1)(2)+=2(bccosA+cacosB+abcosC)3、课堂练习:课本P18 练习1,2,3四、归纳小结:(1) 驾驭三角形的面积公式的简洁推导和应用;(2) 求证简洁的证明题;五、作业:课本P18 练习12.1数列的概念与简洁表示法一、教学目的:1、理解数列及其有关概念;2、理解数列和函数之间的关系;3、理解数列的通项公式。二、教学重点:数列及其有关概念; 教学难点:依据数列的前几项归纳数列的通项公式。三、教学过程: 1、引入:三角形数:1,3,6,10,正方形数:1,4,9,16,25,2、新课教学:(1) 数列的定义:按肯定次序排列的一列数叫做数列。(2) 数列的项:数列中的每一个数都叫做这个数列的项。数列的第1项叫做首项。(3)数列的一般形式:,或简记为。(4)有穷数列,无穷数列,递增数列,递减数列,常数数列,摇摆数列。(5) 数列的通项公式:假如数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.留意:并不是全部数列都能写出其通项公式。3、讲解例题:(1)例1 P29数列的表示法:通项公式法,图象法,列表法,递推公式法(例3)。 (2)例2 P30(3)例3 P314、课堂练习:课本P31 练习1,2,3,4;四、归纳小结:(1) 数列及其有关概念;(2) 数列的通项公式。五、作业:课本P31练习1,2, 4;2.2 等差数列 一、教学目的:1、理解公差的概念,依据定义推断一个数列是等差数列;2、等差数列的性质;3、敏捷运用通项公式求等差数列的首项、公差、项数、指定的项。二、教学重点:等差数列的概念,等差数列的通项公式。 教学难点:等差数列的性质三、教学过程:1、复习回忆:数列的定义数列和表示方法列表法、通项公式、递推公式、图象法。2、引入:(1) 四个数列 P220,5,10,15,20,25,48,53,58,6318,15.5,13,10.5,8,5.510072,10144,10216,10288,10366视察: P37 以上的数列有什么共同特征?共同特征:从第二项起,每一项与它前面一项的差等于同一个常数。3、新课教学:(1) 等差数列:一般地,假如一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。 留意:对于数列,若=d (与n无关的数或字母),n2,nN,则此数列是等差数列,d 为公差。(2)等差中项假如在与中间插入一个数A,使,A,成等差数列数列,那么A应满意什么条件?由定义得A-=-A ,即: (3)思索:P37 数列、的通项公式存在吗?假如存在,分别是什么?由其定义可得:即:即:即:由此归纳等差数列的通项公式可得:(4) 例题讲解:例1:P38求等差数列8,5,2的第20项。例2:P38 出租车问题例3:已知数列的通项公式,其中、是常数,那么这个数列是否肯定是等差数列?若是,首项与公差分别是什么?4、课堂练习:课本P39 练习1;四、归纳小结:1、理解公差的概念;2、等差数列的性质;3、通项公式求等差数列的首项、公差、项数、指定的项。五、作业:课本P39 练习1,2;2.3等差数列的前n项和一、教学目的:1、驾驭等差数列前n项和公式及其思路;2、用等差数列的前n项和公式解决一些简洁的问题;二、教学重点:等差数列前n项和公式。 教学难点:等差数列n项和公式的推导及应用。三、教学过程:1、引入:高斯的教师出了一道题目 “1+2+100=”高斯的解法:1+100=101;2+99=101;50+51=101;101×50=5050” 求等差数列前n项和的一种很重要的思想方法“倒序相加”法。2、新课教学:(1) 等差数列的前项和公式:证明: +: 由此得:(2) 等差数列的前项和公式: 用 代入公式 即得: (3) 例题讲解:例1 P43 (略)例2 P44 (略)例3 P44 (略)例4 P45 (略)3、课堂练习:课本P45 练习1,2,3四、归纳小结:(1) 驾驭等差数列前n项和公式及其思路;(2) 用等差数列的前n项和公式解决一些简洁的问题;2.4等比数列一、教学目的:1、驾驭等比数列的定义;2、等比数列的性质;3、理解等比数列的通项公式及推导。二、教学重点:等比数列的定义及通项公式; 教学难点:敏捷应用定义式及通项公式解决相关问题。三、教学过程:1、引入:课本 P48 1,2,4,8,16,1,1,20,视察:、四个数列有什么共同特征?共同特点:从第二项起,第一项与前一项的比都等于同一个常数。2、新课教学:(1) 等比数列:一般地,假如一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q0),即=q(q0)(2) 等比中项:假如在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项. 即G=±(a,b同号)(3) 探究: P50 等比数列的通项公式: 由等比数列的定义,有:; (4) 例题讲解:例1 P50 例2 P50 例3 P51例4 P513、课堂练习:课本P52 练习 1 , 2,3,4,5四、归纳小结:(1) 驾驭等比数列的定义;(2) 等比数列的性质;(3) 应用定义式及通项公式解决相关问题。2.5 等比数列的前n项和一、教学目的:1、驾驭等比数列的前n项和公式及公式证明思路;2、用等比数列的前n项和公式解决一些简洁问题。二、教学重点:等比数列的前n项和公式的推导; 教学难点:利用等比数列的前n项和公式解决有关问题。三、教学过程:1、引入:课本 P55 “国王对国际象棋的独创者的嘉奖”2、新课教学:(1) 等比数列的前n项和公式:一般地,设等比数列它的前n项和是由得 当时, 或 当q=1时,(2) 例题讲解:例1 P56例2 P56例3 P573、课堂练习:课本P58 练习1, 2, 3;四、归纳小结:(1) 等比数列的前n项和公式的推导;(2) 利用等比数列的前n项和公式解决有关问题。五、作业:课本P58 练习1,2,3;3.1 不等式与不等关系一、教学目的:1、理解不等式(组);2、驾驭不等式的根本性质。二、教学重点:用不等式(组)表示实际问题的不等关系。 教学难点:用不等式(组)正确表示出不等关系;三、教学过程:1、引入:在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。如两点之间线段最短,三角形两边之和大于第三边,等等。引例1:限速40km/h的路标写成不等式就是:引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p应不少于2.3%,写成不等式组2、新课教学:(1) 不等关系:问题1:设点A与平面的间隔 为d,B为平面上的随意一点,则问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每进步0.1元,销售量就可能相应削减2000本。若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种。依据消费的要求,600mm的数量不能超过500mm钢管的3倍。怎样写出满意全部上述不等关系的不等式呢?解:假设截得500 mm的钢管 x根,截得600mm的钢管y根。(2) 不等式的根本性质: (3)例题讲解:例1:已知求证. 四、归纳小结:(1) 用不等式(组)表示实际问题的不等关系;(2) 不等式的根本性质;五、作业:课本P74 练习1,2, 33.2 一元二次不等式及其解法一、教学目的:1、一元二次方程、二次函数与一元二次不等式的关系;2、一元二次方程、二次函数与一元二次不等式的关系3、培育数形结合的实力.二、教学重点:娴熟驾驭一元二次不等式的解法; 教学难点:理解一元二次不等式与一元二次方程、二次函数的关系。三、教学过程:1、复习回忆:一元二次方程、二次函数。2、引入:P76 互联网的收费问题。3、一元二次不等式:(1) 一元二次不等式的定义:只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.(2) 一元二次不等式的解集:画出二次函数的图象,如图,视察函数图象,可知:当 x<0,或x>5时,函数图象位于x轴上方,此时,y>0,即;当0<x<5时,函数图象位于x轴下方,此时,y<0,即;所以,不等式的解集是.(3) 探究一般的一元二次不等式的解法(a>0) 二次函数()的图象一元二次方程有两相异实根有两相等实根 无实根 R 4、例题讲解:例1 P78 求不等式的解集.例2 P78 求不等式的解集.例3 P78 某种牌号的汽车在水泥路面上的刹车间隔 s m和汽车的速度 x km/h有如下的关系: 在一次交通事故中,测得这种车的刹车间隔 大于39.5m,那么这辆汽车刹车前的速度是多少?(准确到0.01km/h)例4、P79 一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线消费的摩托车数量x(辆)与创建的价值y(元)之间有如下的关系: 若这家工厂盼望在一个星期内利用这条流水线创收6000元以上,那么它在一个星期内大约应当消费多少辆摩托车?5、课堂练习:课本P80 练习 1 , 2四、小结:1、一元二次方程、二次函数与一元二次不等式的关系;2、一元二次方程、二次函数与一元二次不等式的关系.3.3.1二元一次不等式(组)与平面区域一、教学目的:1、理解二元一次不等式的几何意义;2、用二元一次不等式组表示平面区域;二、教学重点:用二元一次不等式(组)表示平面区域; 教学难点:数学建模的实力。三、教学过程: 1、引入:(1)P82 从实际问题中抽象出二元一次不等式(组)的数学模型.(2)二元一次不等式和二元一次不等式组的定义.(3)二元一次不等式(组)的解集:满意二元一次不等式(组)的x和y的取值构成有序实数对(x,y),全部这样的有序实数对(x,y)构成的集合称为二元一次不等式(组)的解集。(4)思索:二元一次不等式(组)的解集表示的图形2、二元一次不等式:(1)探讨详细的二元一次不等式x-y<6的解集所表示的图形。第一类:在直线x-y=6上的点;第二类:在直线x-y=6左上方的区域内的点;第三类:在直线x-y=6右下方的区域内的点。在平面直角坐标系中,二元一次不等式x-y<6的解为坐标的点都在直线x-y=6的左上方;二元一次不等式x-y>6表示直线x-y=6右下方的区域;直线x-y=6叫做这两个区域的边界。(2) 二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧全部点组成的平面区域.(虚线表示区域不包括边界直线) 3、例题讲解: (1)例1、画出不等式表示的平面区域。 解:先画直线(画成虚线). 取原点(0,0),代入+4y-4,0+4×0-4=-40, 原点在表示的平面区域内,不等式表示的区域如图:归纳:画二元一次不等式表示的平面区域常采纳“直线定界,特别点定域”的方 法。特别地,当时,常把原点作为此特别点。 (2)例2、用平面区域表示.不等式组的解集。 解:不等式表示直线右下方的区域,表示直线 右上方的区域,取两区域重叠的局部,如图的阴影局部就表示原不等式组的解集。 归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因此是各个不等式所表示的平面区域的公共局部(3)例3、P85 (4)例4、一个化肥厂消费甲、乙两种混合肥料,消费1车皮甲种肥料的主要原料是磷酸盐18t;消费1车皮乙种肥料须要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t、硝酸盐66t,在此根底上消费两种混合肥料。列出满意消费条件的数学关系式,并画出相应的平面区域。7、课堂练习:课本P86练习1,2,3,4四、归纳小结:1、理解二元一次不等式的几何意义;2、用二元一次不等式组表示平面区域;五、作业:P86 练习1,2, 3;3.3.2 简洁的线性规划问题一、教学目的:1、理解线性规划的意义以及约束条件、目的函数、可行解、可行域、最优解等根本概念;2、理解线性规划问题的图解法,并能应用它解决一些简洁的实际问题。二、教学重点:理解线性规划的意义以及约束条件、目的函数、可行解、可行域、最优解等根本概念; 教学难点:用图解法解决简洁的线性规划问题;三、教学过程:1、引入:(1) 某工厂有A、B两种配件消费甲、乙两种产品,每消费一件甲产品运用4个A配件耗时1h,每消费一件乙产品运用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂全部可能的日消费支配是什么?用不等式组表示问题中的限制条件:设甲、乙两种产品分别消费x、y件,又已知条件可得二元一次不等式组:画出不等式组所表示的平面区域。(2) 若消费一件甲产品获利2万元,消费一件乙产品获利3万元,采纳哪种消费支配利润最大?设消费甲产品x件,乙产品y件时,工厂获得的利润为z,则z=2x+3y.可以看到,直线与不等式组的区域的交点满意不等式组,而且当截距最大时,z获得最大值。问题可以转化为当直线与不等式组确定的平面区域有公共点时,在区域内找一个点P,使直线经过点P时截距最大。2、线性规划的有关概念:(1)线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件(2)线性目的函数:关于x、y的一次式z=2x+y是欲到达最大值或最小值所涉及的变量x、y的解析式,叫线性目的函数(3)线性规划问题:一般地,求线性目的函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题(4)可行解、可行域和最优解:满意线性约束条件的解(x,y)叫可行解由全部可行解组成的集合叫做可行域使目的函数获得最大或最小值的可行解叫线性规划问题的最优解3、例题讲解:(1)例5 养分学家指出,成人良好的日常饮食应当至少供应0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。为了满意养分专家指出的日常饮食要求,同时使花费最低,须要同时食用食物A和食物B多少kg?(2)例6 钢板问题(3)例7 在上一节例4中,若消费1车皮甲种肥料,产生的利润为10 000元;消费1车皮乙种肥料,产生的利润为5 000元,那么分别消费甲、乙两种肥料各多少车皮,可以产生最大的利润?4、课堂练习:课本P91 练习1,2四、归纳小结:1、理解线性规划的意义以及约束条件、目的函数、可行解、可行域、最优解等根本概念;2、用图解法解决简洁的线性规划问题;3.4 根本不等式一、教学目的:1、推导并驾驭根本不等式;2、理解根本不等式的几何意义. 二、教学重点:应用数形结合的思想理解不等式,并从不同角度探究不等式的证明过程; 教学难点:根本不等式等号成立条件。三、教学过程:1、引入:根本不等式的几何背景,北京召开的第24界国际数学家大会的会标。 2、讲授新课:(1)在正方形ABCD中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为。这样,4个直角三角形的面积的和是2ab,正方形的面积为。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:。(2)当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有。结论:一般的,假如。(3)证明(4)假如a>0,b>0,我们用分别代替a、b ,可得。通常我们把上式写作:(5)探究: 根本不等式几何意义是“半径不小于半弦”3、例题讲解:(1)例1 P99 1)用篱笆围成一个面积为100m的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?2)段长为36 m的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少(2)例2 P99 某工厂要建立一个长方体无盖贮水池,其容积为4800m3,深为3m,假如池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?4、课堂练习:课本P100 练习1,2,3,4四、课堂小结:1、推导并驾驭根本不等式;2、理解根本不等式的几何意义.五、作业:课本P100 练习1,2

    注意事项

    本文(高中数学人教版必修5教案.docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开