欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    电大高等数学基础期末考试复习试题及复习资料.docx

    • 资源ID:34955184       资源大小:577.49KB        全文页数:19页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    电大高等数学基础期末考试复习试题及复习资料.docx

    高等数学1学习辅导(一)第一章 函数理解函数的概念;驾驭函数中符号f ( )的含义;理解函数的两要素;会求函数的定义域及函数值;会推断两个函数是否相等。两个函数相等的充分必要条件是定义域相等且对应关系一样。理解函数的主要性质,即单调性、奇偶性、有界性和周期性。假设对随意,有,那么称为偶函数,偶函数的图形关于轴对称。假设对随意,有,那么称为奇函数,奇函数的图形关于原点对称。驾驭奇偶函数的判别方法。驾驭单调函数、有界函数及周期函数的图形特点。娴熟驾驭根本初等函数的解析表达式、定义域、主要性质和图形。根本初等函数是指以下几种类型: 常数函数: 幂函数: 指数函数: 对数函数: 三角函数: 反三角函数:理解复合函数、初等函数的概念,会把一个复合函数分解成较简洁的函数。如函数可以分解,。分解后的函数前三个都是根本初等函数,而第四个函数是常数函数和幂函数的和。会列简洁的应用问题的函数关系式。例题选解一、填空题设,那么。解:设,那么,得故。函数的定义域是。解:对函数的第一项,要求且,即且;对函数的第二项,要求,即。取公共部分,得函数定义域为。函数的定义域为,那么的定义域是。解:要使有意义,必需使,由此得定义域为。函数的定义域为 。解:要使有意义,必需满意且,即成立,解不等式方程组,得出,故得出函数的定义域为。设,那么函数的图形关于对称。解:的定义域为 ,且有即是偶函数,故图形关于轴对称。二、单项选择题以下各对函数中,是一样的。A.;B.;C.;D.解:A中两函数的对应关系不同, , B, D三个选项中的每对函数的定义域都不同,所以A B, D都不是正确的选项;而选项C中的函数定义域相等,且对应关系一样,应选项C正确。设函数的定义域为,那么函数的图形关于对称。A.yx;B.x轴;C.y轴;D.坐标原点解:设,那么对随意有即是奇函数,故图形关于原点对称。选项D正确。 3设函数的定义域是全体实数,那么函数是A.单调减函数; B.有界函数;C.偶函数; D.周期函数解:A, B, D三个选项都不肯定满意。设,那么对随意有即是偶函数,应选项C正确。函数 A.是奇函数; B. 是偶函数;C.既奇函数又是偶函数; D.是非奇非偶函数。解:利用奇偶函数的定义进展验证。 所以B正确。假设函数,那么 A.; B. ;C.; D. 。解:因为所以那么,应选项B正确。第二章 极限及连续知道数列极限的“定义;理解函数极限的描绘性定义。理解无穷小量的概念;理解无穷小量的运算性质及其及无穷大量的关系;知道无穷小量的比较。无穷小量的运算性质主要有: 有限个无穷小量的代数和是无穷小量; 有限个无穷小量的乘积是无穷小量; 无穷小量和有界变量的乘积是无穷小量。娴熟驾驭极限的计算方法:包括极限的四那么运算法那么,消去极限式中的不定因子,利用无穷小量的运算性质,有理化根式,两个重要极限,函数的连续性等方法。求极限有几种典型的类型123娴熟驾驭两个重要极限:或重要极限的一般形式:或利用两个重要极限求极限,往往须要作适当的变换,将所求极限的函数变形为重要极限或重要极限的扩展形式,再利用重要极限的结论和极限的四那么运算法那么,如理解函数连续性的定义;会推断函数在一点的连续性;会求函数的连续区间;理解函数连续点的概念;会对函数的连续点进展分类。连续点的分类:点是的连续点,假设在点的左、右极限都存在,那么称为的第一类连续点;假设在点的左、右极限有一个不存在,那么称为的第二类连续点。理解连续函数的和、差、积、商分母不为0及复合仍是连续函数,初等函数在其定义域内连续的结论,知道闭区间上连续函数的几个结论。典型例题解析一、填空题 极限。解:留意:无穷小量乘以有界变量等于无穷小量,其中=1是第一个重要极限。函数的连续点是。解:由是分段函数,是的分段点,考虑函数在处的连续性。因为 所以函数在处是连续的,又在和都是连续的,故函数的连续点是。设,那么。解:,故函数的单调增加区间是。二、单项选择题函数在点处A.有定义且有极限; B.无定义但有极限;C.有定义但无极限; D.无定义且无极限解:在点处没有定义,但无穷小量有界变量=无穷小量应选项B正确。以下函数在指定的改变过程中,是无穷小量。A.; B.;C. ;D.解:无穷小量乘以有界变量仍为无穷小量,所以而A, C, D三个选项中的极限都不为0,应选项B正确。 三、计算应用题计算以下极限: 4 解: = 题目所给极限式分子的最高次项为分母的最高次项为,由此得 4当时,分子、分母的极限均为0,所以不能用极限的除法法那么。求解时先有理化根式在利用除法法那么和第一个重要极限计算。 =2.设函数 问1为何值时,在处有极限存在?2为何值时,在处连续?解:1要在处有极限存在,即要成立。因为所以,当时,有成立,即时,函数在处有极限存在,又因为函数在某点处有极限及在该点处是否有定义无关,所以此时可以取随意值。2依函数连续的定义知,函数在某点处连续的充要条件是 于是有,即时函数在处连续。第三章 导数及微分 导数及微分这一章是我们课程的学习重点之一。在学习的时候要侧重以下几点:理解导数的概念;理解导数的几何意义;会求曲线的切线和法线;会用定义计算简洁函数的导数;知道可导及连续的关系。在点处可导是指极限存在,且该点处的导数就是这个极限的值。导数的定义式还可写成极限 函数在点处的导数的几何意义是曲线上点处切线的斜率。曲线在点处的切线方程为函数在点可导,那么在点连续。反之那么不然,函数在点连续,在点不肯定可导。理解微分的概念;知道一阶微分形式不变性。熟记导数根本公式,娴熟驾驭以下求导方法1导数的四那么运算法那么2复合函数求导法那么3隐函数求导方法4对数求导方法5参数表示的函数的求导法正确的采纳求导方法有助于我们的导数计算,如一般当函数表达式中有乘除关系或根式时,求导时采纳取对数求导法,例如函数,求。在求导时干脆用导数的除法法那么是可以的,但是计算时会费事一些,而且简洁出错。假如我们把函数先进展变形,即 再用导数的加法法那么计算其导数,于是有 这样计算不但简洁而且不易出错。又例如函数 ,求。明显干脆求导比较费事,可采纳取对数求导法,将上式两端取对数得两端求导得整理后便可得假设函数由参数方程的形式给出,那么有导数公式可以娴熟地利用导数根本公式和导数的四那么运算法那么、复合函数的求导法那么计算函数的导数,可以利用隐函数求导法,取对数求导法,参数表示的函数的求函数的导数。娴熟驾驭微分运算法那么微分四那么运算法那么及导数四那么运算法那么类似 一阶微分形式的不变性微分的计算可以归结为导数的计算,但要留意它们之间的不同之处,即函数的微分等于函数的导数及自变量微分的乘积。理解高阶导数的概念;会求显函数的二阶导数。函数的高阶高数即为函数的导数的导数。由此要求函数的二阶导数就要先求函数的一阶导数。要求函数的阶导数就要先求函数的阶导数。第三章 导数及微分典型例题选解一、填空题设函数在邻近有定义,且,那么。解: 故应填1。曲线在点1,1处切线的斜率是。解:由导数的几何意义知,曲线在处切线的斜率是,即为函数在该点处的导数,于是故应填。设,那么。解:,故故应填二、单项选择题设函数,那么。A.;B.2; C.4;D不存在解:因为,且,所以,即C正确。设,那么。A.;B. ;C. ;D. 解:先要求出,再求。因为,由此得,所以即选项D正确。 3设函数,那么A.0; B.1;C.2; D. 解:因为,其中的三项当时为0,所以应选项C正确。 4曲线在点处的切线斜率等于0。A.;B.;C.;D.解:,令得。而,应选项C正确。5 ,那么。A.;B.;C.;D.解:应选项C正确。三、计算应用题设,求解:由导数四那么运算法那么和复合函数求导法那么由此得设,其中为可微函数,求。解 = =求复合函数的导数时,要先搞清函数的复合构成,即复合函数是由哪些根本初等函数复合而成的,特殊要分清复合函数的复合层次,然后由外层开始,逐层运用复合函数求导公式,一层一层求导,关键是不要遗漏,最终化简。3.设函数由方程确定,求。解:方法一:等式两端对求导得整理得方法二:由一阶微分形式不变性和微分法那么,原式两端求微分得左端右端由此得整理得4.设函数由参数方程确定,求。 解:由参数求导法5设,求。解 第四章 导数的应用典型例题一、填空题1.函数的单调增加区间是.解:,当时.故函数的单调增加区间是.2.极限.解:由洛必达法那么3.函数的微小值点为 。解:,令,解得驻点,又时,;时,所以是函数的微小值点。二、单项选择题1.函数 在区间上是 A 单调增加 B单调削减 C先单调增加再单调削减 D先单调削减再单调增加解:选择D,当时,;当时,;所以在区间上函数先单调削减再单调增加。2. 假设函数满意条件 ,那么在内至少存在一点,使得成立。 A在内连续; B在内可导; C在内连续,在内可导; D在内连续,在内可导。 解:选择D。 由拉格朗日定理条件,函数在内连续,在内可导,所以选择D正确。3. 满意方程的点是函数的 。A极值点 B拐点C驻点 D连续点解:选择C。依驻点定义,函数的驻点是使函数一阶导数为零的点。4.设函数在内连续,且,那么函数在处 。A获得极大值 B获得微小值C肯定有拐点 D可能有极值,也可能有拐点解:选择D函数的一阶导数为零,说明可能是函数的极值点;函数的二阶导数为零,说明可能是函数的拐点,所以选择D。三、解答题 1.计算题求函数的单调区间。解:函数的定义区间为,由于 令,解得,这样可以将定义区间分成和两个区间来探讨。当时,;当是,。由此得出,函数在内单调递减,在内单调增加。 2.应用题欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法所用材料最省?解:设底边边长为,高为,所用材料为且 令得,且因为,所以。于是以6米为底边长,3米为高做长方体容器用料最省。3证明题:当时,证明不等式 证 设函数,因为在上连续可导,所以在上满意拉格朗日中值定理条件,有公式可得 其中,即 又由于,有故有 两边同时取以为底的指数,有即 所以当时,有不等式 成立.第5章学习辅导2典型例题解析一、填空题曲线在随意一点处的切线斜率为,且曲线过点,那么曲线方程为。解:,即曲线方程为。将点代入得,所求曲线方程为函数的一个原函数是,那么。解: 是的一个原函数,那么。解:用凑微分法 二、单项选择题设,那么。A. ; B. ;C. ; D. 解:因应选项A正确 设是的一个原函数,那么等式成立。A.;B.;C.;D.解:正确的等式关系是应选项D正确 设是的一个原函数,那么。A. ; B. ;C. ; D. 解:由复合函数求导法那么得 应选项C正确三、计算题计算以下积分:解:利用第一换元法 利用第二换元法,设, 计算以下积分:解:利用分部积分法 利用分部积分法 高等数学1第六章学习辅导 综合练习题一单项选择题 1以下式子中,正确的选项是 。A. B. C. D. (2). 以下式子中,正确的选项是 A. B. C. D. (3) 以下广义积分收敛的是 。 A .B. C. D. (4) 假设是上的连续偶函数,那么 。A. B 0C D (5) 假设及是上的两条光滑曲线,那么由这两条曲线及直线所围图形的面积( ).A. B. C. D. 答案:1 A;2D; 3D; 4C; 5A。 解:1依据定积分定义及性质可知 A正确。 而 B不正确。在0,1区间内 C 不正确。 依据定积分定义可知,定积分值及函数及定积分的上、下限有关,而及积分变量的选取无关。 故D不正确。 (2) 由变上限的定积分的概念知 A、C不正确。 由定积分定义知 B不正确。 D正确。 (3) A不正确。 B。不正确。 C。不正确。 DD正确4由课本344页 642和345页643知C。正确。5所围图形的面积始终是在上面的函数减去在下面的函数 A正确。 二 填空题(1) (2) (3) 在区间上,曲线和轴所围图形的面积为_。 (4) (5) (a0 p0 )答案:解:1 2 (2) 所围图形的面积S=(3) 由定积分的几何意义知: 定积分的值等于(4) y= 所围图形的面积(5) p1时 无穷积分发散。三计算以下定积分(1(23 4 5答案:(1(23 4 (5) 四定积分应用 求由曲线,及直线所围平面图形的面积 x解:画草图 求交点 由 y=x, xy=1得x=1 .y=1y 2 y=2 y=x 0 xy=1 第七章综合练习题一单项选择题 1、假设 成立,那么级数发散,其中 表示此级数的部分和。A、; B、单调上升;C、 D、不存在2、当条件 成立时,级数肯定发散。A、发散且收敛; B、发散;C、发散; D、和都发散。3、假设正项级数收敛,那么 收敛。A、 B、C 、 D、4、假设两个正项级数、满意,那么结论 ,是正确的。A、发散那么发散; B、收敛那么收敛;C、发散那么收敛; D、收敛那么发散。5、 假设f(x)= , 那么 = ( )。A、 B 、 C D、答案:1、D 2、A 3、B 4、A 5、C二填空题1、 当_时,几何级数收敛。2、 级数是_级数。3、 假设级数收敛,那么级数_。4、 指数函数f(x)= 展成 x的幂级数为_。5、 假设幂级数的收敛区间为9 ,9 ,那么幂级数的收敛区间为_。答案:1、<1 2、发散 3、收敛 4、 5、C ( 0 ,6 )三计算题1、 推断以下级数的收敛性 解:此正项级数的通项满意 n=2,3,. 由于收敛,那么由比较判别法可知收敛。>1 那么由比值判别法可知发散。 由于是交织级数,且=及,由莱布尼兹判别法知级数收敛。2、 求以下幂级数的收敛半径 解: 因此收敛半径R=1, 令 得幂级数可知的收敛半径为4 ,所以原幂级数的收敛半径第八章综合练习题及参考答案一单项选择题 1、 以下阶数最高的微分方程是 。A、; B、;C、 D、2、以下一阶微分方程中为可别离变量的微分方程是 。A、; B、C、 D、3、微分方程的通解为 。A、 B、C 、 D、4、微分方程的通解为 。A、; B、C、; D、5、微分方程的特解应设为 。A、 B 、 C D、答案:1、A 2、C 3、C 4、B 5、D二填空题6、 一阶线性微分方程的通解公式为_。7、 二阶线性微分方程的特征根为_。8、 二阶线性微分方程的通解中含有_独立的随意常数。9、 二阶微分方程的通解为_。10、 假设是二阶线性非齐次微分方程的一个特解,为其相应的齐次微分方程的通解,那么非齐次微分方程的通解为_。答案:1、 2、 3、两个 4、 5、 三计算题3、 求一阶微分方程的满意的特解 求一阶微分方程的满意的特解 解:微分方程变为,两边积分得方程的通解为 由条件得, 故微分方程的的特解方法一 由一阶线性微分方程的通解公式得 由条件得,故微分方程的的特解 方法二 由微分方程可得,两边积分得方程的通解为 由条件得,故微分方程的的特解2、求微分方程的通解解:原方程对应的齐次方程的特征方程为 特征根为, 故齐次微分方程的通解其中为随意常数 设原方程的一个特解应为,代入方程得得 故微分方程的通解其中为随意常数 求微分方程的通解解:原方程对应的齐次方程的特征方程为 得特征根为, 故齐次微分方程的通解其中为随意常数 设原方程的一个特解应为,代入方程得 故微分方程的通解其中为随意常数

    注意事项

    本文(电大高等数学基础期末考试复习试题及复习资料.docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开