欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    离散数学试题及复习资料1.docx

    • 资源ID:34955624       资源大小:39.68KB        全文页数:12页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    离散数学试题及复习资料1.docx

    一、填空题 1 设集合,其中A1,2,3, 1,2, 则A - B 3 ; r(A) - r(B) 3,1,3,2,3,1,2,3 .2. 设有限集合A, = n, 则 |r(A×A)| = .3. 设集合A = a, b, B = 1, 2, 则从A到B的全部映射是a1= (a,1), (b,1), a2= (a,2), (b,2),a3= (a,1), (b,2), a4= (a,2), (b,1), 其中双射的是 a3, a4 .4. 已知命题公式GØ(P®Q)R,则G的主析取范式是 (PØQR) 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为 12 ,分枝点数为 3 .6 设A、B为两个集合, 1,2,4, B = 3,4, 则从AÇB 4 ; AÈB1,2,3,4;AB 1,2 .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是 自反性 , 对称性 传递性 .8. 设命题公式GØ(P®(QÙR),则使公式G为真的说明有 (1, 0, 0), (1, 0, 1), (1, 1, 0)9. 设集合A1,2,3,4, A上的关系R1 = (1,4),(2,3),(3,2), R2 = (2,1),(3,2),(4,3), 则R1·R2 = (1,3),(2,2),(3,1) , R2·R1 = (2,4),(3,3),(4,2) _ R12 = (2,2),(3,3).10. 设有限集A, B, = m, = n, 则| |r(A´B)| = .11 设是三个集合,其中R是实数集,A = x | -1x1, xÎR, B = x | 0x < 2, xÎR,则 = -1<<0 , = x | 1 < x < 2, xÎR , AB = x | 0x1, xÎR , .13. 设集合A2, 3, 4, 5, 6,R是A上的整除关系,则R以集合形式(列举法)记为 (2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6) . 14. 设一阶逻辑公式G = "(x)®$(x),则G的前束范式是 $x(ØP(x)Q(x) .15.设G是具有8个顶点的树,则G中增加 21 条边才能把G变成完全图。(完全图的边数,树的边数为1)16. 设谓词的定义域为a, b,将表达式"(x)$(x)中量词消退 ,写成及之对应的命题公式是_ (R(a)R(b)(S(a)S(b) _.17. 设集合A1, 2, 3, 4,A上的二元关系R(1,1),(1,2),(2,3), S(1,3),(2,3),(3,2)。则R×S (1, 3),(2, 2) , R2 (1, 1),(1, 2),(1, 3).二、选择题1 设集合2,a,3,4,B = a,3,4,1,E为全集,则下列命题正确的是( C )。(A)2ÎA (B)aÍA (C)ÆÍaÍBÍE (D)a,1,3,4ÌB.2 设集合1,2,3上的关系R(1,1),(2,2),(2,3),(3,2),(3,3),则R不具备( D ).(A)自反性(B)传递性(C)对称性(D)反对称性1234563 设半序集(A,)关系的哈斯图如下所示,若A的子集B = 2,3,4,5,则元素6为B的( B )。(A)下界 (B)上界(C)最小上界 (D)以上答案都不对4 下列语句中,( B )是命题。(A)请把门关上 (B)地球外的星球上也有人 (C)x + 5 > 6 (D)下午有会吗?5 设I是如下一个说明:D, 则在说明I下取真值为1的公式是( D ).(A)$x"() (B)"x"() (C)"() (D)"x$().6. 若供选择答案中的数值表示一个简洁图中各个顶点的度,能画出图的是( C ).(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6).7. 设G、H是一阶逻辑公式,P是一个谓词,G$(x), H"(x),则一阶逻辑公式G®H是( C ).(A)恒真的 (B)恒假的 (C)可满意的 (D)前束范式.8 设命题公式GØ(P®Q),HP®(Q®ØP),则G及H的关系是( A )。(A)GÞH (B)HÞG (C)GH (D)以上都不是.9 设A, B为集合,当( D )时ABB.(A)AB(B)AÍB(C)BÍA(D)ABÆ.10 设集合A = 1,2,3,4, A上的关系R(1,1),(2,3),(2,4),(3,4), 则R具有( B )。(A)自反性 (B)传递性(C)对称性 (D)以上答案都不对11 下列关于集合的表示中正确的为( B )。(A)aÎ (B)aÍ(C)ÆÎ (D)Î12 命题"(x)取真值1的充分必要条件是( A ).(A) 对随意x,G(x)都取真值1. (B)有一个x0,使G(x0)取真值1. (C)有某些x,使G(x0)取真值1. (D)以上答案都不对.13. 设G是连通平面图,有5个顶点,6个面,则G的边数是( A ).(A) 9条 (B) 5条 (C) 6条 (D) 11条.14. 设G是5个顶点的完全图,则从G中删去( A )条边可以得到树.(A)6 (B)5 (C)10 (D)4.15. 设图G的相邻矩阵为,则G的顶点数及边数分别为( D ).(A)4, 5 (B)5, 6 (C)4, 10 (D)5, 8.三、计算证明题1.设集合A1, 2, 3, 4, 6, 8, 9, 12,R为整除关系。(1) 画出半序集()的哈斯图;(2) 写出A的子集B = 3,6,9,12的上界,下界,最小上界,最大下界;(3) 写出A的最大元,最小元,极大元,微小元。解:(1)(2) B无上界,也无最小上界。下界1, 3; 最大下界是3(3) A无最大元,最小元是1,极大元8, 12, 9; 微小元是12. 设集合A1, 2, 3, 4,A上的关系R() | x, yÎA 且 x ³ y, 求 (1) 画出R的关系图;(2) 写出R的关系矩阵.解:(1) (2)3. 设R是实数集合,s,t,j是R上的三个映射,s(x) = 3, t(x) = 2x, j(x) 4,试求复合映射st,ss, sj, jt,sjt.解: (1)sts(t(x)t(x)+32323.(2)sss(s(x)s(x)+3(3)+36,(3)sjs(j(x)j(x)+34+3, (4)jtj(t(x)t(x)/424 = 2,(5)sjts(jt)jt+324+32+3.4. 设I是如下一个说明:D = 2, 3, abf (2)f (3)P(2, 2)P(2, 3)P(3, 2)P(3, 3)32320011试求 (1) P(a, f (a)P(b, f (b);(2) "x$y P (y, x). 解: (1) P(a, f (a)P(b, f (b) = P(3, f (3)P(2, f (2)= P(3, 2)P(2, 3)= 10= 0.(2) "x$y P (y, x) = "x (P (2, x)P (3, x) = (P (2, 2)P (3, 2)(P (2, 3)P (3, 3)= (01)(01)= 11= 1.5. 设集合A1, 2, 4, 6, 8, 12,R为A上整除关系。(1) 画出半序集()的哈斯图;(2) 写出A的最大元,最小元,极大元,微小元;(3) 写出A的子集B = 4, 6, 8, 12的上界,下界,最小上界,最大下界.解:(1) (2)无最大元,最小元1,极大元8, 12; 微小元是1. (3) B无上界,无最小上界。下界1, 2; 最大下界2.6. 设命题公式G = Ø(PQ)(Q(ØPR), 求G的主析取范式。解: G = Ø(PQ)(Q(ØPR)= Ø(ØPQ)(Q(PR)= (PØQ)(Q(PR)= (PØQ)(QP)(QR)= (PØQR)(PØQØR)(PQR)(PQØR)(PQR)(ØPQR)= (PØQR)(PØQØR)(PQR)(PQØR)(ØPQR)= m3m4m5m6m7 = S(3, 4, 5, 6, 7).7. (9分)设一阶逻辑公式:G = ("(x)$(y)"(x),把G化成前束范式. 解: G = ("(x)$(y)"(x)= Ø("(x)$(y)"(x)= (Ø"(x)Ø$(y)"(x)= ($xØP(x)"yØQ(y)"(z)= $x"y"z(ØP(x)ØQ(y)R(z)9. 设R是集合A = a, b, c, d. R是A上的二元关系, R = (), (), (), (),(1) 求出r(R), s(R), t(R);(2) 画出r(R), s(R), t(R)的关系图.解:(1) r(R)R(), (), (), (), (), (), (), (),s(R)RR1(), (), (), () (), (),t(R)RR2R3R4(), (), (), (), (), (), (), (), (); (2)关系图:11. 通过求主析取范式推断下列命题公式是否等价:(1) G = (PQ)(ØPQR) (2) H = (P(QR)(Q(ØPR)解:G(PQ)(ØPQR)(PQØR)(PQR)(ØPQR)m6m7m3å (3, 6, 7)H = (P(QR)(Q(ØPR)(PQ)(QR)(ØPQR)(PQØR)(PQR)(ØPQR)(PQR)(ØPQR)(PQØR)(ØPQR)(PQR)m6m3m7的主析取范式一样,所以G = H.13. 设R和S是集合Aa, b, c, d上的关系,其中R(a, a),(a, c),(b, c),(c, d), S(a, b),(b, c),(b, d),(d, d).(1) 试写出R和S的关系矩阵;(2) 计算RS, RS, R1, S1R1.解: (1) (2)RS(a, b),(c, d),RS(a, a),(a, b),(a, c),(b, c),(b, d),(c, d),(d, d), R1(a, a),(c, a),(c, b),(d, c),S1R1(b, a),(d, c). 四、证明题1. 利用形式演绎法证明:PQ, RS, PR蕴涵QS。解:(1) PRP(2) ØRPQ(1)(3) PQP(4) ØRQQ(2)(3)(5) ØQRQ(4)(6) RSP(7) ØQSQ(5)(6)(8) QSQ(7)2. 设为随意集合,证明:() = (BC).解: () = 3. (本题10分)利用形式演绎法证明:ØAB, ØCØB, CD蕴涵AD。解:(1) AD(附加)(2) ØABP(3) BQ(1)(2)(4) ØCØBP(5) BCQ(4)(6) CQ(3)(5)(7) CDP(8) DQ(6)(7)(9) ADD(1)(8)所以 ØAB, ØCØB, CD蕴涵AD.4. (本题10分)A, B为两个随意集合,求证:A(AB) = (AB)B .解:4. A(AB) = A(AB)A()(A)(A)Æ(A)(A)AB而 (AB)B= (AB)= (A)(B)= (A)Æ= AB所以:A(AB) = (AB)B.参考答案一、填空题1. 3; 3,1,3,2,3,1,2,3. 2. .3. a1= (a,1), (b,1), a2= (a,2), (b,2),a3= (a,1), (b,2), a4= (a,2), (b,1); a3, a4.4. (PØQR).5. 12, 3. 6. 4, 1, 2, 3, 4, 1, 2. 7. 自反性;对称性;传递性.8. (1, 0, 0), (1, 0, 1), (1, 1, 0).9. (1,3),(2,2),(3,1); (2,4),(3,3),(4,2); (2,2),(3,3).10. 2m´n.11. x | -1x < 0, xÎR; x | 1 < x < 2, xÎR; x | 0x1, xÎR.12. 12; 6.13. (2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6).14. $x(ØP(x)Q(x).15. 21.16. (R(a)R(b)(S(a)S(b).17. (1, 3),(2, 2); (1, 1),(1, 2),(1, 3). 二、选择题 1. C. 2. D. 3. B. 4. B.5. D. 6. C. 7. C.8. A. 9. D. 10. B. 11. B. 13. A. 14. A.15. D三、计算证明题1. (1)(2) B无上界,也无最小上界。下界1, 3; 最大下界是3.(3) A无最大元,最小元是1,极大元8, 12, 90+; 微小元是1.2 = (1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4).(1) (2)3. (1)sts(t(x)t(x)+32323.(2)sss(s(x)s(x)+3(3)+36,(3)sjs(j(x)j(x)+34+3, (4)jtj(t(x)t(x)/424 = 2,(5)sjts(jt)jt+324+32+3.4. (1) P(a, f (a)P(b, f (b) = P(3, f (3)P(2, f (2)= P(3, 2)P(2, 3)= 10= 0. (2) "x$y P (y, x) = "x (P (2, x)P (3, x) = (P (2, 2)P (3, 2)(P (2, 3)P (3, 3)= (01)(01)= 11= 1.5. (1)(2) 无最大元,最小元1,极大元8, 12; 微小元是1.(3) B无上界,无最小上界。下界1, 2; 最大下界2.6. G = Ø(PQ)(Q(ØPR)= Ø(ØPQ)(Q(PR)= (PØQ)(Q(PR)= (PØQ)(QP)(QR)= (PØQR)(PØQØR)(PQR)(PQØR)(PQR)(ØPQR)= (PØQR)(PØQØR)(PQR)(PQØR)(ØPQR)= m3m4m5m6m7 = S(3, 4, 5, 6, 7).7. G = ("(x)$(y)"(x)= Ø("(x)$(y)"(x)= (Ø"(x)Ø$(y)"(x)= ($xØP(x)"yØQ(y)"(z)= $x"y"z(ØP(x)ØQ(y)R(z)9. (1) r(R)R(), (), (), (), (), (), (), (),s(R)RR1(), (), (), () (), (),t(R)RR2R3R4(), (), (), (), (), (), (), (), ();(2)关系图:11. G(PQ)(ØPQR)(PQØR)(PQR)(ØPQR)m6m7m3å (3, 6, 7)H = (P(QR)(Q(ØPR)(PQ)(QR)(ØPQR)(PQØR)(PQR)(ØPQR)(PQR)(ØPQR)(PQØR)(ØPQR)(PQR)m6m3m7å (3, 6, 7)的主析取范式一样,所以G = H.13. (1) (2)RS(a, b),(c, d),RS(a, a),(a, b),(a, c),(b, c),(b, d),(c, d),(d, d), R1(a, a),(c, a),(c, b),(d, c),S1R1(b, a),(d, c).四 证明题1. 证明:PQ, RS, PR蕴涵QS(1) PRP(2) ØRPQ(1)(3) PQP(4) ØRQQ(2)(3)(5) ØQRQ(4)(6) RSP(7) ØQSQ(5)(6)(8) QSQ(7)2. 证明:() = (A) = A()= A(BC)= (BC)3.证明:ØAB, ØCØB, CD蕴涵AD(1) AD(附加)(2) ØABP(3) BQ(1)(2)(4) ØCØBP(5) BCQ(4)(6) CQ(3)(5)(7) CDP(8) DQ(6)(7)(9) ADD(1)(8)所以 ØAB, ØCØB, CD蕴涵AD.5. 证明:A(AB) = A(AB)A()(A)(A)Æ(A)(A)AB而 (AB)B= (AB)= (A)(B)= (A)Æ= AB所以:A(AB) = (AB)B.

    注意事项

    本文(离散数学试题及复习资料1.docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开