第26届全国中学生物理竞赛复赛试卷.docx
第26届全国中学生物理竞赛复赛试卷一、填空问答题每题5分,共25分1有人设想了一种静电场:电场的方向都垂直于纸面并指向纸里,电场强度的大小自左向右渐渐增大,如下图。这种分布的静电场是否可能存在?试述理由。 2海尔-波普彗星轨道是长轴特别大的椭圆,近日点到太阳中心的间隔 为0.914天文单位1天文单位等于地日间的平均间隔 ,那么其近日点速率的上限与地球公转轨道可视为圆周速率之比约为保存2位有效数字 。3用测电笔接触市电相线,即使赤脚站在地上也不会触电,缘由是 ;另一方面,即使穿绝缘性能良好的电工鞋操作,测电笔仍会发亮,缘由是 。4在图示的困难网络中,全部电源的电动势均为E0,全部电阻器的电阻值均为R0,全部电容器的电容均为C0,那么图示电容器A极板上的电荷量为 。5如图,给静止在程度粗糙地面上的木块一初速度,使之开始运动。一学生利用角动量定理来考察此木块以后的运动过程:“把参考点设于如下图的地面上一点O,此时摩擦力f的力矩为0,从而地面木块的角动量将守恒,这样木块将不减速而作匀速运动。请指出上述推理的错误,并给出正确的说明: 。二、20分图示正方形轻质刚性程度桌面由四条完全一样的轻质细桌腿1、2、3、4支撑于桌角A、B、C、D处,桌腿竖直立在程度粗糙刚性地面上。桌腿受力后将产生弹性微小形变。现于桌面中心点O至角A的连线OA上某点P施加一竖直向下的力F,令,求桌面对桌腿1的压力F1。三、15分1一质量为m的小球与一劲度系数为k的弹簧相连组成一体系,置于光滑程度桌面上,弹簧的另一端与固定墙面相连,小球做一维自由振动。试问在一沿此弹簧长度方向以速度u作匀速运动的参考系里视察,此体系的机械能是否守恒,并说明理由。 。2假设不考虑太阳和其他星体的作用,那么地球-月球系统可看成孤立系统。假设把地球和月球都看作是质量匀称分布的球体,它们的质量分别为M和m,月心-地心间的间隔 为R,万有引力恒量为G。学生甲以地心为参考系,利用牛顿第二定律和万有引力定律,得到月球相对于地心参考系的加速度为;学生乙以月心为参考系,同样利用牛顿第二定律和万有引力定律,得到地球相对于月心参考系的加速度为。这二位学生求出的地-月间的相对加速度明显冲突,请指出其中的错误,并分别以地心参考系以地心速度作平动的参考系和月心参考系以月心速度作平动的参考系求出正确结果。四、20分火箭通过高速喷射燃气产生推力。设温度T1、压强p1的炙热高压气体在燃烧室内源源不断生成,并通过管道由狭窄的喷气口排入气压p2的环境。假设燃气可视为志向气体,其摩尔质量为,每摩尔燃气的内能为u=cVTcV是常量,T为燃气的肯定温度。在快速流淌过程中,对管道内随意处的两个特别靠近的横截面间的气体,可以认为它与四周没有热交换,但其内部那么到达平衡状态,且有匀称的压强p、温度T和密度,它们的数值随着流淌而不断变更,并满意绝热方程恒量,式中R为普适气体常量,求喷气口处气体的温度与相对火箭的喷射速率。五、20分内半径为R的直立圆柱器皿内盛水银,绕圆柱轴线匀速旋转水银不溢,皿底不露,稳定后的液面为旋转抛物面。假设取坐标原点在抛物面的最低点,纵坐标轴z与圆柱器皿的轴线重合,横坐标轴r与z轴垂直,那么液面的方程为,式中为旋转角速度,g为重力加速度当代已运用大面积的此类旋转水银液面作反射式天文望远镜。视察者的眼睛位于抛物面最低点正上方某处,保持位置不变,然后使容器停转,待液面静止后,发觉与稳定旋转时相比,看到的眼睛的像的大小、正倒都无变更。求人眼位置至稳定旋转水银面最低点的间隔 。六、20分两惯性系S与S初始时刻完全重合,前者相对后者沿z轴正向以速度v高速运动。作为光源的自由质点静止于S系中,以恒定功率P向四周辐射各向同性光子。在S系中视察,辐射偏向于光源前部即所谓的前灯效应。1在S系中视察,S系中向前的那一半辐射将集中于光源前部以x轴为轴线的圆锥内。求该圆锥的半顶角。相对论速度变换关系为 式中ux与ux分别为S与S系中测得的速度x重量,c为光速。2求S系中测得的单位时间内光源辐射的全部光子的总动量与总能量。七、20分1设想光子能量为E的单色光垂直入射到质量为M、以速度V沿光入射方向运动的志向反射镜无汲取上,试用光子与镜子碰撞的观点确定反射光的光子能量E。可取以下近似:,其中c为光速。2.假设在上述问题中单色光的强度为,试求反射光的强度可以近似认为光子撞击镜子后,镜子的速度仍为V。光的强度定义为单位时间内通过垂直于光传播方向单位面积的光子的能量。八、20分惰性气体分子为单原子分子,在自由原子情形下,其电子电荷分布是球对称的。负电荷中心与原子核重合。但如两个原子接近,那么彼此能因静电作用产生极化正负电荷中心不重合,从而导致有互相作用力,这称为范德瓦尔斯互相作用。下面我们采纳一种简化模型来探讨此问题。当负电中心与原子核不重合时,假设以x表示负电中心相对正电荷原子核的位移,当x为正时,负电中心在正电荷的右侧,当x为负时,负电中心在正电荷的左侧,如图1所示。这时,原子核的正电荷对荷外负电荷的作用力f相当于一个劲度系数为k的弹簧的弹性力,即f=kx,力的方向指向原子核,核外负电荷的质量全部集中在负电中心,此原子可用一弹簧振子来模拟。今有两个一样的惰性气体原子,它们的原子核固定,相距为R,原子核正电荷的电荷量为q,核外负电荷的质量为m。因原子间的静电互相作用,负电中心相对各自原子核的位移分别为x1和x2,且|x1|和|x2|都远小于R,如图2所示。此时每个原子的负电荷除受到自己核的正电荷作用外,还受到另一原子的正、负电荷的作用。众所周知,孤立谐振子的能量E=mv2/2+kx2/2是守恒的,式中v为质量m的振子运动的速度,x为振子相对平衡位置的位移。量子力学证明,在肯定零度时,谐振子的能量为h/2,称为零点振动能,h为普朗克常量,为振子的固有角频率。试计算在肯定零度时上述两个有范德瓦尔斯互相作用的惰性气体原子构成的体系的能量,与两个相距足够远的可视为孤立的、没有范德瓦尔斯互相作用的惰性气体原子的能量差,并从结果断定范德瓦尔斯互相作用是吸引还是排挤。可利用当|x|<<1时的近似式(1+x)1/21+x/2-x2/8,(1+x)-11x+x2。第26届全国中学生物理竞赛复赛试卷参考解答与评分标准一、填空问答题.每题5分,共25评分.1. 答案与评分标淮: 这种分布的静电场不行能存在.因为静电场是保守场,电荷沿随意闭合途径一周电场力做的功等于0,但在这种电场中,电荷可以沿某一闭合途径挪动一周而电场力做功不为05分2答案与评分标淮: 1.55分3答案与评分标淮:测电笔内阻很大,通过与之串联的人体上的电流或加在人体上的电压在平安范围内;2分市电为沟通电,而电工鞋相当于一电容器,串联在电路中仍允许沟通电通过3分4答案与评分标淮: 5分5答案与评分标淮: 该学生未考虑竖直方向木块所受的支持力和重力的力矩.仅依据摩擦力的力矩为零便推出木块的角动量应守恒,这样推理本身就不正确.事实上,此时支持力合力的作用线在重力作用线的右侧,支持力与重力的合力矩不为0,木块的角动量不守恒,与木块作减速运动不冲突5分二、参考解答:设桌面对四条腿的作用力皆为压力,分别为、因轻质刚性的桌面处在平衡状态,可推得 (1)由于对称性, (2)考察对桌面对角线BD的力矩,由力矩平衡条件可得(3)依据题意, ,c=0对应于力F的作用点在O点,c=1对应于F作用点在A点.设桌腿的劲度系数为, 在力F的作用下,腿1的形变为,腿2和4的形变均为,腿3的形变为依题意,桌面上四个角在同一平面上,因此满意, 即(4)由、式,可得,(5),(6)当时,.,表示腿3无形变;,表示腿3受到桌面的作用力为拉力,这是不行能的,故应视此时式(3)式仍成立由式,可得(7)综合以上探讨得 , . (8) , . (9)评分标准:此题20分. (1)式1分,(2)式1分,(3)式2分,(4)式7分,得到由(8)式表示的结果得4分,得到由(9)式表示的结果得5分三、参考解答:1.否缘由是墙壁对于该体系而言是外界,墙壁对弹簧有作用力,在运动参考系里此力的作用点有位移,因此要对体系做功,从而会变更这一体系的机械能 2.因地球受月球的引力作用,月球受地球的引力作用,它们相对惯性系都有加速度,故它们都不是惯性参考系相对非惯性参考系,牛顿第二定律不成立假如要在非惯性参考系中应用牛顿第二定律,必需引入相应的惯性力;而这两位学生又都未引入惯性力,所以他们得到的结果原那么上都是错误的以地心为参考系来求月球的加速度.地心系是非惯性系,设地球相对惯性系的加速度的大小为,那么由万有引力定律和牛顿第二定律有,(1)加速度的方向指向月球相对地心参考系,月球受到惯性力作用,其大小,(2)方向指向地球,与月球受到的万有引力的方向一样假设月球相对地心系的加速度为,那么有(3)由、三式,得,(4)加速度的方向指向地球以月心为参考系来求地球的加速度.月心系也是非惯性系,设月球相对惯性系的加速度的大小为,那么由万有引力定律和牛顿第二定律有,(5)加速度的方向指向地球相对月心参考系,地球受到惯性力作用,惯性力的大小,(6)方向指向月球,与地球受到的万有引力的方向一样假设地球相对月心系的加速度为,那么有(7)由(5)、(6)、(7)三式得,(8)加速度的方向指向月球 式与式说明,地球相对月心系的加速度与月球相对地心系的加速度大小相等(方向相反),与运动的相对性一样评分标准:此题15分. 第1小问5分.第2小问10分.指出不正确并说明理由,占2分;(1)至(8)式,每式1分四、参考解答:于火箭燃烧室出口处与喷气口各取截面与,它们的面积分别为和,由题意,以其间管道内的气体为探讨对象,如下图设经过很短时间,这部分气体流至截面与之间,间、间的微小体积分别为、,两处气体密度为、,流速为、气流到达稳恒时,内部一切物理量分布只依靠于位置,与时间无关由此可知,尽管间气体更换,但总的质量与能量不变先按绝热近似求喷气口的气体温度质量守恒给出,(1)即气体可视为由气体绝热挪动所得事实上,因气流稳恒,气体流出喷口时将再现气体状态对质量的气体,利用志向气体的状态方程(2)和绝热过程方程,(3)可得(4)再通过能量守恒求气体的喷射速率由式与,可得,(5)再利用(1)、式,知,因, ,故(6)整个体系经时间的总能量包括宏观流淌机械能与微观热运动内能增量为部分与部分的能量差由于重力势能变更可忽视,在志向气体近似下并考虑到式,有(7)体系挪动过程中,外界做的总功为(8)依据能量守恒定律,绝热过程满意,(9)得,(10)其中利用了、两式评分标准:此题20分. (2)式1分,(3)式2分,(4)式3分,(6)式1分,(7)式6分,(8)式4分,(9)式1分,(10)式2分五、参考解答:旋转抛物面对平行于对称轴的光线严格聚焦,此抛物凹面镜的焦距为(1)由式,旋转抛物面方程可表示为(2)停转后液面水安静止由液体不行压缩性,知液面上升以下求抛物液面最低点上升的高度抛物液面最低点以上的水银,在半径、高的圆柱形中占据体积为的部分,即附图中左图阴影部分绕轴线旋转所得的回转体;其余体积为的部分无水银体在高度处的程度截面为圆环,利用抛物面方程,得处圆环面积(3)将体倒置,得附图中右图阴影部分绕轴线旋转所得的回转体,相应抛物面方程变为,(4)其高度处的程度截面为圆面,面积为(5)由此可知,(6)即停转后抛物液面最低点上升(7)因抛物镜在其轴线旁边的一块小面积可视为凹球面镜,抛物镜的焦点就是球面镜的焦点,故可用球面镜的公式来处理问题.两次视察所见到的眼睛的像分别经凹面镜与平面镜反射而成,而先后看到的像的大小、正倒无变更,这就要求两像对眼睛所张的视角一样设眼长为凹面镜成像时,物距即所求间隔 ,像距v与像长分别为,(8)(9)平面镜成像时,由于抛物液面最低点上升,物距为,(10)像距与像长分别为,(11)(12)两像视角一样要求,(13)即,(14)此处利用了(8)(12)诸式由(14)式可解得所求间隔 (15)评分标准:此题20分. (1)式1分,(7)式4分,(8)、(9)式各2分,(10) 、(11)、 (12)式各1分,(13)式6分,(15)式2分六、参考解答:1先求两惯性系中光子速度方向的变换关系依据光速不变原理,两系中光速的大小都是以和分别表示光子速度方向在和系中与和轴的夹角,那么光速的重量为,(1)(2)再利用相对论速度变换关系,得(3)系中光源各向同性辐射,说明有一半辐射分布于的方向角范围内,系中,此范围对应由上式求得(4)可以看出,光源的速度v越大,圆锥的顶角越小2系中,质点静止,在时间内辐射光子的能量来自质点静能的削减,即,(5)式中为时间内质点削减的质量系中,质点以速度v匀速运动,由于辐射,其动质量削减,故动量与能量亦削减转化为光子的总动量为,即;(6)转化为光子的总能量为,即(7)系中光源静止,测得的辐射时间为本征时,在系中膨胀为,(8)由以上各式可得在S系中单位时间内辐射的全部光子的总动量与总能量分别为,(9)(10)评分标准:此题20分.第1小问7分.(3)式4分,(4)式3分.第2小问13分.(5)、 (6) 、(7)式各2分,(8)式3分,(9) 、(10) 式各2分七、参考解答:1光子与反射镜碰撞过程中的动量和能量守恒定律表现为,(1)(2)其中为碰撞后反射镜的速度从上两式消去,得(3) (4)当时,可得(5)2.考察时刻位于垂直于光传播方向的截面A左侧的长为光在1s时间内所传播的间隔 c´1s、底面积为单位面积柱体内的光子,如图1所示经过1s时间,它们全部通过所考察的截面假设单位体积中的光子数为,依据光强的定义,入射光的强度 6假设A处固定一反射镜,那么柱体的底面S2处的光子在时刻t到达位于A处的反射镜便马上被反射,以光速c向左挪动;当柱体的底面S1在t+1s到达A处被反射镜反射时,这柱体的底面S2已到达A左边间隔 A为c´1s处,全部反射光的光子仍分布在长为c´1s、截面积为单位面积的柱体内,所以反射光的强度与入射光的强度相等假如反射镜不固定,而是以恒定的速度V向右挪动,那么在时刻t+1s柱体的底面S1到达A处时,反射镜已移到A右边间隔 为V´1s的N处,这时底面S2移到A左侧离A的间隔 为c´1s处,如图2中a所示.设再经过时间,S1与镜面相遇,但这时镜面己来到处,因为在时间内,镜面又移过了一段间隔 ,即在时刻,底面S1才到达反射镜被反射亦即原在S1处的光子须多行进ct的间隔 才能被反射因此 得 (7)而这时,底面S2又向左移了一段间隔 这样反射光的光子将分布在长为的柱体内因反射不变更光子总数,设为反射光单位体积中的光子数,有 故有 (8)依据光强度的定义,反射光的强度 (9)由(4)、(8)、(9)各式得 (10)留意到有 (11) 评分标准:此题20分.第1小问9分. (1)、(2)式各2分,(4)或(5)式5分.第2小问11分.(8)式5分,(9)式3分,(10) 或(11)式3分八、参考解答:两个相距R的惰性气体原子组成体系的能量包括以下几部分:每个原子的负电中心振动的动能,每个原子的负电中心因受各自原子核“弹性力作用的弹性势能,一个原子的正、负电荷与另一原子的正、负电荷的静电互相作用能.以和分别表示两个原子的负电中心振动速度,和分别表示两个原子的负电中心相对各自原子核的位移,那么体系的能量 , (1)式中U为静电互相作用能,(2)为静电力常量因,利用,可将(2)式化为,(3)因此体系总能量可近似表为.(4)留意到和 ,可将(4)式改写为.(5)式中,(6),(7),(8)(9)(5)式说明体系的能量相当于两个独立谐振子的能量和,而这两个振子的固有角频率分别为,(10).(11)在肯定零度,零点能为,(12)两个孤立惰性气体原子在肯定零度的能量分别表示为和,有,(13)式中(14)为孤立振子的固有角频率由此得肯定零度时,所考察的两个惰性气体原子组成的体系的能量与两个孤立惰性气体原子能量和的差为(15)利用,可得(16),说明范德瓦尔斯互相作用为互相吸引评分标准:此题20分.(1)式1分,(2)式3分,(4)式3分,(10)、(11)式各4分, (12)式2分, (16)式2分,末句说明占1分