新课标数学必修第章平面向量单元测试题含复习资料.docx
新课标数学必修4第2章平面对量单元测试题(1)第I卷(选择题 共60分)一、选择题:本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、化简 得( ) A B C D2、下列命题正确的是( )A单位向量都相等 B若与是共线向量,与是共线向量,则与是共线向量 C,则 D若与是单位向量,则3、下列命题中错误的是( )A对于随意向量,有|+|+| B若 =0,则 =或 =C对于随意向量,有 D若,共线,则 = ±|4、按向量将点平移到点,则按向量将点平移到( )A.B.C.D.5、把的图像按向量经过一次平移后得到的图像,则为( )A. B. C. D. (2,) 6、已知且点P在线段的延长线上,且,则点P的坐标( )A. B. C. D.7、已知ABC中,A=45°,a=2,b=,那么B为( )A30° B60° C30°或150° D60°或120°8、在ABC中,则C为( )A B C D或9、若三点A(2,3),B(3,a),C(4,b)共线,则有( )Aa=3,b=-5 Ba-b+1=0 C2a-b=3 Da-2b=010、,且,则、的夹角为( )A60° B90° C120° D150°11、ABC中,|=5,|=8,·=20,则|为( )A. 6 B. 7 C. 8 D. 9 12、设,已知两个向量,则向量长度的最大值是( )A.B.C.D.第卷(共90分)二、填空题:本大题共4小题;每小题4分,共16分.13、已知|=3,2,与的夹角为600,则 14、已知,则 15、已知向量=(1,2),=(2,3),=(4,1),用和表示,则=_16、在ABC中,若B=300,AB=2,AC=2,则ABC的面积S是 ;三、解答题:本大题共6小题;共74分.17、(8分)已知ABCD的顶点A(0,-9),B(2,6), C(4,5),求第四个顶点D的坐标 18、(14分)如图,平行四边形ABCD中,E,F分别是BC,DC的中点,G为DE、BF交点。若=,=,试以,为基底表示、 AGEFCBD 19、(14分)已知=(1,2),当k为何值时,(1)k+与-3垂直?(2)k+与-3平行?平行时它们是同向还是反向?20、(14分)求与向量 =(1,2), =(2,1)夹角相等的单位向量的坐标21、(12分)ABC中,若sinB=2sinAcosC,且最小角的余弦为, (1)推断ABC的形态 (2)求ABC最大角22、(12分)某沿海城市旁边海面有一台风,据观测,台风中心位于城市正南方向200km的海面P处,并正以20km/h的速度向北偏西方向挪动(其中),台风当前影响半径为10km,并以10km/h的速度不断增大,问几小时后该城市开场受到台风影响?影响时间多长?高一数学必修4向量答案班级: 姓名: 座号: 第I卷(选择题 共60分)一、选择题:本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、化简 得( D ) A B C D2、下列命题正确的是( C )A单位向量都相等 B若与是共线向量,与是共线向量,则与是共线向量 C,则 D若与是单位向量,则3、下列命题中错误的是( B )A对于随意向量,有|+|+| B若 =0,则 =或 =C对于随意向量,有 D若,共线,则 = ±|4、按向量将点平移到点,则按向量将点平移到( A )A.B.C.D.5、把的图像按向量经过一次平移后得到的图像,则为 ( D )A. B. C. D. (2,) 6、已知且点P在线段的延长线上,且,则点P的坐标( D )A. B. C. D.7、已知ABC中,A=45°,a=2,b=,那么B为( A )A30° B60° C30°或150° D60°或120°8、在ABC中,则C为( C )A B C D或9、若三点A(2,3),B(3,a),C(4,b)共线,则有( C )Aa=3,b=-5 Ba-b+1=0 C2a-b=3 Da-2b=010、,且,则、的夹角为( C )A60° B90° C120° D150°11、ABC中,|=5,|=8,·=20,则|为( B )A. 6 B. 7 C. 8 D. 9 12设,已知两个向量,则向量长度的最大值是( C )A.B.C.D.第卷(共90分)二、填空题:本大题共4小题;每小题4分,共16分.13、已知|=3,2,与的夹角为600,则 14、已知,则 28 15、已知向量=(1,2),=(2,3),=(4,1),用和表示,则=16、在ABC中,若B=300,AB=2,AC=2,则ABC的面积S是;三、解答题:本大题共6小题;共74分.17、(8分)已知ABCD的顶点A(0,-9),B(2,6), C(4,5),求第四个顶点D的坐标 解法一:设D坐标为(x,y),对角线AC与BD的交点为O点O为A、C中点,易得O(),即O(2,-2) 又点O为B、D中点,则,解得,故D坐标为(2,10)解法二:设D坐标为(x,y),依题意得,而, 则,解得解得,故D坐标为(2,10)AGEFBCD18、(14分)如图,平行四边形ABCD中,E,F分别是BC,DC的中点,G为DE、CF交点。若=,=,试以,为基底表示、 解:19.(14分)已知=(1,2),当k为何值时,(1)k+与-3垂直?(2)k+与-3平行?平行时它们是同向还是反向?解:k+=k(1,2)+(-3,2)=(k-3,2k+2)-3=(1,2)-3(-3,2)=(10,-4)(1)若k+与-3垂直,则(k+)(-3)0即10(k-3)+(-4)(2k+2)=0,解得k=19(2)解法一:若k+与-3平行,则(-4)(k-3)-10(2k+2)=0,解得k=此时k+=(-,), -3=(10,-4),故它们反向。解法二:若k+与-3平行,设k+=(-3)=-3,解得,它们反向20、(14分)求与向量 =(1,2), =(2,1)夹角相等的单位向量的坐标解:设,与的夹角为,与的夹角为,依题意得 ,解得x=y,代入x2+y2=1,解得21、(12分)ABC中,若sinB=2sinAcosC,且最小角的余弦为, (1)推断ABC的形态 (2)求ABC最大角解:(1)由正弦定理和余弦定理可知,(其中R为外接圆半径)化简可得 即,故ABC为等腰三角形,其中AC(2)当最小角为B时,AC为最大角,此时且,又A为锐角,故,当最小角为A时,B为最大角,此时且,可见B为钝角,22、(12分)某沿海城市旁边海面有一台风,据观测,台风中心位于城市正南方向200km的海面P处,并正以20km/h的速度向北偏西方向挪动(其中),台风当前影响半径为10km,并以10km/h的速度不断增大,问几小时后该城市开场受到台风影响?影响时间多长?解:如右图,设该市为A,经过t小时后台风开场影响该城市,则t小时后台风经过的路程PC(20t)km,台风半径为CD(10+10t)km,需满意条件:CDAC依据余弦定理可知, 整理得即 解得7小时后台风开场影响该市,持续时间达12小时。新课标数学必修4第2章平面对量单元测试题(2)一、选择题: 1、下列各式中,正确的是( ) (A) (B) (C)若(),则= (D)=,则=2、已知|=|=1,与的夹角为90°,且=2+3,=k4,则k的值为( ) (A)6 (B)6 (C)3 (D)3 3、已知=(1,2),=(x,1),且+2与2平行,则x=( ) (A)1 (B)2 (C) (D)4、设是的相反向量,则下列说法中错误的是 ( ) (A)和的长度肯定相等 (B)和是平行向量 (C)和的长度肯定不相等 (D)是的相反向量 5、已知,则的值是( ) (A)63 (B)83 (C)23 (D)576、和是表示平面内全部向量的一组基底,则下面的四个向量中,不能作为一组基底的是 ( ) (A)+ 和 (B)32和46 (C)+ 2和+2 (D)和 +7、已知平面内三个点A(0,3),B(3,3),C(x,1),且,则x的值为( ) (A)5 (B)3 (C)1 (D)5 8、已知P1(2,1),P2(0,5),且点P在线段P1P2的延长线上,使|P1P|=2|PP2|,则P点的坐标是( ) (A)(2,11) (B)(,1) (C)(,3) (D)(2,7) 9*、将函数y=log2(2x)的图象F按=(2,1)平移到,则的解析式为( ) (A)y=log22(x2)1 (B)y=log22(x+2)1 (C)y=log22(x+2)+1 (C)y=log22(x2)+1二、填空题: 10、已知,则在上的投影等于_。 11、若|=3,|=4,且(+)·(+3)=33,则与的夹角为 。12、已知|=2,=(2,2),若,则=_。13、若=(2,3),=(4,7),则在方向上的投影为_。 14、给出以下命题 点C在线段AB上,且|AC|=|AB|,则 在ABC中,有 数量积不满意结合律,即 若,则、中至少有一个为 若|>|,则> 一个人向西行走100m,然后变更方向向南行走100m,则此人两次位移的和为向西南行走100m。 其中正确的命题序号为 (要求:把你认为正确的命题序号都填上)。三、解答题 15、平面内有三个已知点A(1,2),B(7,0),C(5,6),求,。 16、已知两点A(-2,4),B(6,0)在直线AB上求点C,使。17、如图,平行四边形ABCD中,BE=BA,BF=BD,求证:E,F,C三点共线。(利用向量证明) 答案1、C 2、B 3、D 4、C 5、B 6、B 7、D 8、B 9、A 10、6 11、120° 12、或 13、 14、 15、=(6,2) =(6,8) =(0,10) =(12,6) 16、C1(2,2),C2(-6,6) 17、设,又有公共点C,所以C、E、F共线