欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    苏教版八年级数学全册知识点总结1.docx

    • 资源ID:34975090       资源大小:102.98KB        全文页数:13页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    苏教版八年级数学全册知识点总结1.docx

    苏教版数学(八年级上册)学问点总结轴对称轴对称的性质轴对称图形线段角等腰三角形DBA等腰三角形轴对称的应用等腰梯形设计轴对称图案第一章 轴对称图形第二章 勾股定理及平方根一勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即2、勾股定理的逆定理假如三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。3、勾股数:满意的三个正整数,称为勾股数。二、实数的概念及分类 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数 正无理数 无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率,或化简后含有的数,如+8等;(3)有特定构造的数,如0.1010010001等;(4)某些三角函数值,如sin60o等三、平方根、算数平方根和立方根 1、算术平方根:一般地,假如一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特殊地,0的算术平方根是0。表示方法:记作“”,读作根号a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2、平方根:一般地,假如一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。表示方法:正数a的平方根记做“”,读作“正、负根号a”。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。 留意的双重非负性: 03、立方根一般地,假如一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。表示方法:记作性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。留意:,这说明三次根号内的负号可以移到根号外面。四、实数大小的比拟 1、实数比拟大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,肯定值大的反而小。2、实数大小比拟的几种常用方法(1)数轴比拟:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比拟:设a、b是实数,(3)求商比拟法:设a、b是两正实数,(4)肯定值比拟法:设a、b是两负实数,则。(5)平方法:设a、b是两负实数,则。五、实数的运算 (1)六种运算:加、减、乘、除、乘方 、开方(2)实数的运算依次先算乘方和开方,再算乘除,最终算加减,假如有括号,就先算括号里面的。(3)运算律加法交换律 加法结合律 乘法交换律 乘法结合律 乘法对加法的安排律 第三章 中心对称图形(一)一、平移 1、定义在平面内,将一个图形整体沿某方向挪动肯定的间隔 ,这样的图形运动称为平移。2、性质平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。二、旋转 1、定义在平面内,将一个图形绕某肯定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。2、性质旋转前后两个图形是全等图形,对应点到旋转中心的间隔 相等,对应点及旋转中心的连线所成的角等于旋转角。三、四边形的相关概念 1、四边形在同一平面内,由不在同始终线上的四条线段首尾顺次相接组成的图形叫做四边形。2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。四边形的外角和定理:四边形的外角和等于360°。推论:多边形的内角和定理:n边形的内角和等于180°; 多边形的外角和定理:随意多边形的外角和等于360°。6、设多边形的边数为n,则多边形的对角线共有条。从n边形的一个顶点动身能引(n-3)条对角线,将n边形分成(n-2)个三角形。四平行四边形 1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。2、平行四边形的性质(1)平行四边形的对边平行且相等。(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线相互平分。(4)平行四边形是中心对称图形,对称中心是对角线的交点。常用点:(1)若始终线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。(2)推论:夹在两条平行线间的平行线段相等。3、平行四边形的断定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线相互平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的间隔 两条平行线中,一条直线上的随意一点到另一条直线的间隔 ,叫做这两条平行线的间隔 。平行线间的间隔 到处相等。5、平行四边形的面积S平行四边形=底边长×高=ah五、矩形 1、矩形的定义有一个角是直角的平行四边形叫做矩形。2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且相互平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的间隔 相等);对称轴有两条,是对边中点连线所在的直线。3、矩形的断定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab六、菱形 1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等(3)菱形的对角线相互垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的间隔 相等);对称轴有两条,是对角线所在的直线。3、菱形的断定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线相互垂直的平行四边形是菱形4、菱形的面积 S菱形=底边长×高=两条对角线乘积的一半七正方形 1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。2、正方形的性质(1)正方形四条边都相等,对边平行(2)正方形的四个角都是直角 (3)正方形的两条对角线相等,并且相互垂直平分,每一条对角线平分一组对角(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。3、正方形的断定断定一个四边形是正方形的主要根据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。4、正方形的面积设正方形边长为a,对角线长为b S正方形=八、梯形 (一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的间隔 叫做梯形的高。2、梯形的断定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。(2)一组对边平行且不相等的四边形是梯形。(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下: 一般梯形梯形 直角梯形 特殊梯形 等腰梯形(三)等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。(3)等腰梯形的对角线相等。(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。3、等腰梯形的断定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。(选择题和填空题可干脆用)(四)梯形的面积(1)如图,(2)梯形中有关图形的面积:;八、中心对称图形 1、定义在平面内,一个图形绕某个点旋转180°,假如旋转前后的图形相互重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。2、性质(1)关于中心对称的两个图形是全等形。(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。(3)关于中心对称的两个图形,对应线段平行(或在同始终线上)且相等。3、断定假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。第四章 数量、位置的变更一、 在平面内,确定物体的位置一般须要两个数据。二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条相互垂直且有公共原点的数轴,组成平面直角坐标系。其中,程度的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。2、为了便于描绘坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个局部,分别叫做第一象限、第二象限、第三象限、第四象限。留意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。3、点的坐标的概念对于平面内随意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。点的坐标用(a,b)表示,其依次是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。平面内点的及有序实数对是一一对应的。4、不同位置的点的坐标的特征 (1)、各象限内点的坐标的特征 点P(x,y)在第一象限点P(x,y)在第二象限点P(x,y)在第三象限点P(x,y)在第四象限(2)、坐标轴上的点的特征点P(x,y)在x轴上,x为随意实数点P(x,y)在y轴上,y为随意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上x及y相等点P(x,y)在第二、四象限夹角平分线上x及y互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标一样。位于平行于y轴的直线上的各点的横坐标一样。(5)、关于x轴、y轴或原点对称的点的坐标的特征点P及点p关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P(x,-y)点P及点p关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y)点P及点p关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y)(6)、点到坐标轴及原点的间隔 点P(x,y)到坐标轴及原点的间隔 :(1)点P(x,y)到x轴的间隔 等于(2)点P(x,y)到y轴的间隔 等于(3)点P(x,y)到原点的间隔 等于三、坐标变更及图形变更的规律:坐标( x , y )的变更 图形的变更 x × a或 y × a 被横向或纵向拉长(压缩)为原来的 a倍 x × a, y × a 放大(缩小)为原来的 a倍 x ×( -1)或 y ×( -1) 关于 y 轴或 x 轴对称 x ×( -1), y ×( -1) 关于原点成中心对称 x +a或 y+ a 沿 x 轴或 y 轴平移 a个单位 x +a, y+ a 沿 x 轴平移 a个单位,再沿 y 轴平移 a个单第五章 一次函数一、函数:一般地,在某一变更过程中有两个变量x及y,假如给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。三、函数的三种表示法(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图象法用图象表示函数关系的方法叫做图象法。四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量及函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:根据自变量由小到大的依次,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特殊地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。2、一次函数的图像: 全部一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。k的符号b的符号函数图像图像特征k>0b>0 y x 图像经过一、二、三象限,y随x的增大而增大。b<0 y 0 x 图像经过一、三、四象限,y随x的增大而增大。K<0b>0 y 0 x 图像经过一、二、四象限,y随x的增大而减小b<0 y 0 x 图像经过二、三、四象限,y随x的增大而减小。注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。4、正比例函数的性质 一般地,正比例函数有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。5、一次函数的性质 一般地,一次函数有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小6、正比例函数和一次函数解析式确实定确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,须要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。7、一次函数及一元一次方程的关系:任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k0)的形式 而一次函数解析式形式正是y=kx+b(k、b为常数,k0)当函数值为0时,即kx+b=0就及一元一次方程完全一样 结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k0)的形式所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值 从图象上看,这相当于已知直线y=kx+b确定它及x轴交点的横坐标值第六章 数据的集中度1、刻画数据的集中趋势(平均程度)的量:平均数 、众数、中位数 2、平均数(1)平均数:一般地,对于n个数我们把叫做这n个数的算术平均数,简称平均数,记为。(2)加权平均数: 3、众数 一组数据中出现次数最多的那个数据叫做这组数据的众数。4、中位数 一般地,将一组数据按大小依次排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。第七章一元一次不等式1不等式:用不等号表示不等关系的式子叫做不等式2不等式的解:能使不等式成立的未知数的值叫做不等式的解。 不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。3不等式的性质:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。 不等式的两边都乘(或除以)一个正数,不等号的方向不变。不等式的两边都乘(或除以)一个负数,不等号的方向变更。4解一元一次不等式的步骤及解一元一次方程类似。但是,在不等式两边都乘(或除以)同一个不等于0的数时,必需根据这个数是正数,还是负数,正确地运用不等式的性质2,特殊要留意在不等式两边都乘(或除以)同一个负数时,要变更不等号的方向。5用一元一次不等式解决问题步骤:(1)审:仔细审题,分清已知量、未知量的及其关系,找出题中不等关系,要抓住题设中的关键字“眼”,如“大于”、“小于”、“不小于”、“不大于”等的含义。 (2)设:设出适当的未知数。 (3)列:根据题中的不等关系,列出不等式。 (4)解:解出所列不等式的解集。 (5)答:写出答案,并检验答案是否符合题意。6一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。不等式组中全部不等式的解集的公共局部叫做这个不等式组的解集,求不等式组解集的过程叫解不等式组。一元一次不等式组解决实际问题的步骤:及一元一次不等式解决实际问题类似,不同之处在及列出不等式组,并解出不等式组。7一元一次不等式及一元一次方程、一次函数 当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值;当已知一次函数中的一个变量范围时,可以用一元一次不等式(组)确定另一个变量取值的范围。第八章分式1分式定义:一般地,假如A、B表示两个整式,并且B中含有字母,那么代数式叫做分式,其中A是分式的分子,B是分式的分母。2分式的根本性质: 分式的分子和分母都乘(或除以)同一个不等于0的整式,分式的值不变。用式子表示就是=,=(其中M是不等于0的整式)根据分式的根本性质,把一个分式的分子和分母分别除以它们的公因式,叫做分式的约分。根据分式的根本性质,把几个异分母的分式化成同分母的分式,叫做分式的通分。及异分母的分数通分类似,异分母的分式通分时,通常取各分母全部因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母。3同分母的分式相加减:分母不变,把分子相加减异分母的分式相加减:先通分,再加减。4分式乘分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,及被除式相乘。5分式方程:分母中含有未知数的方程叫做分式方程。 求分式方程的解,只要在方程的两边同乘各分式的最简公分母,有时就可以将分式方程转化为一元一次方程来解。 假如由变形后的方程求得的根不适宜原方程,那么这种根叫做原方程的增根。 因为解分式方程时可能产生增根,所以解分式方程时必需检验。 有时,根据实际问题列出的分式方程虽然有解,但所求得的的解不符合实际意义,所以这个实际问题仍旧无解。第九章 反比例函数1反比例函数:一般地,形如y=(k为常数,k0)的函数叫做反比例函数。其中x是自变量,y是x的函数,k是比例系数。 反比例函数的自变量x的取值范围是不等于0的一实在数。2、一般地,反比例函数y=(k为常数,k0)的图象是由两个分支组成的,是双曲线。 反比例函数y=(k为常数,k0)的图象是双曲线。 当k>0时,双曲线的两分支分别在第一、三象限,在每一个象限内,y随x增大而减小, 当k<0时,双曲线的两支分别在第二、四象限,在每一个象限内,y随x增大而增大。|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段及两坐标轴围成的矩形的面积。正比例函数及反比例函数中的异号时二者的图象无交点,同号时它们有两个关于原点对称的交点且交点坐标为和3反比例函数的应用 第十章 图形的相像1、比例的根本性质:假如=,那么= 假如=,那么= 在=中,我们把b叫做a和c的比例中项2、假如=,那么称线段AC被点B黄金分割,点B为线段AC的黄金分割点,AB及AC(或BC及AB)的比值约为0.618,这个比值称为黄金比。3相像图形:各角对应相等、各边对应成比例的两个三角形叫做相像三角形 两个相像三角形对应边的比值叫做它们的相像比类似地,假如两个边数一样的多边形的各角对应相等、各边对应成比例,那么这 多边形相像。相像多边形的对应边的比叫做相像比。4探究三角形相像的条件假如一个三角形的两个三角及另一个三角形的两个角对应相等,那么这两个三角形相像。平行于三角形一边的直线及其他两边(或两边的延长线)相交,所构成的三角形及原三角形相像。假如一个三角形的两边及另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相像。假如一个三角形的三条边及另一个三角形的三条边对应成比例,那么这两个三角形相像。5相像三角形的性质 相像三角形周长的比等于相像比 相像多边形周长的比等于相像比 相像三角形面积的比等于相像比的平方 相像多边形面积的比等于相像比的平方 相像三角形对应高的比等于相像比 相像三角形对应中线的比、对应角平分线的比都等于相像比6图形的位似:两个多边形不仅相像,而且对应顶点的连线相交于一点,对应边相互平行,像这样的两个图形叫做位似形,这个点叫做位似中心。性质:位似图形的对应点和位似中心在同一条直线上,它们到位似中心的间隔 比等于相像比 位似多边形的对应边平行或共线利用位似形可以将一个图形放大或缩小。位似图形的中心可以在随意一点,不过位似图形也会随着位似中心的位变而位变留意1位似是一种具有位置关系的相像,所以两个图形是位似图形必是相像图形,而相像图形不肯定是位似图形。 2两个位似图形的位似中心只有一个 3两个位似图形可以位于位似中心两侧,也可能位于位似中心同侧 4位似比就是相像比 5平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形位似7相像三角形的应用 在平行光线的照耀下,物体所产生的影称为平行投影 在平行光线的照耀下,不同物体的物高及其影长成比例 在点光源的照耀下,物体所产生的影称为中心投影 第十一章 图形及证明(一)1你的推断对吗2说理 对名称或术语的含义进展描绘、做出规定,就是给出它们的定义 推断某一件事情的句子叫做命题(如:等角的余角相等是命题,而形态一样的三角形是全等三角形吗?就不是命题,因为并没有对某一件事情作出推断) 假如条件成立,那么结论成立,这样的命题叫做真命题 假如条件成立时,不能保证结论总是正确的,也就是说结论不成立,像这样的命题叫做假命题3用推理的方法证明真命题的过程叫做证明。经过证明的真命题称为定理 证明及图形有关的命题,一般有以下步骤:(1) 根据命题,画出图形。(2) 根据命题,结合图形,写出已知、求证;已知局部是已知事项(即命题的条件),求证局部是论证的事项(即命题的结论)(3) 写出证明过程 定理:内错角相等,两直线平行 两直线平行,内错角相等 两直线平行,同旁内角互补 三角形内角和定理 :三角形三个内角的和等于180° 三角形内角和定理的推论:三角形的一个外角等于和它不相邻的两个内角的和 三角形的一个外角大于任何一个和它不相邻的内角 直角三角形的两个锐角互余4互逆命题:两个命题中,假如第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题 把一个命题的条件和结论互换就得到它的逆命题,所以每个命题都有逆命题 推断一个命题是假命题,只需举出一个反例就行了第十二章 相识概率1、等可能性:假如一个试验全部可能的结果有无穷多个,每次只出现其中的某个结果,而且每个结果出现的时机都一样,那么我们就称这个试验的结果具有等可能性。2、一般地,假如一个试验有n个等可能的结果,那么其中的m个结果之一出现时,事务A发生,那么事务A发生的概率为 P(A)=利用树状图或者表格可以扶植我们不重复、不遗漏地列出全部可能出现的结果。3、等可能条件下的概率(二)等可能条件下的几何概型(转盘、方格)的概率 把等可能条件下,试验结果无限的几何概型通过等积分割转化为古典概型。

    注意事项

    本文(苏教版八年级数学全册知识点总结1.docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开