欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    椭圆经典例题分类教案.docx

    • 资源ID:34996030       资源大小:445.88KB        全文页数:12页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    椭圆经典例题分类教案.docx

    椭圆经典例题分类1.椭圆定义的应用例1 椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程分析:题目没有指出焦点的位置,要考虑两种位置解:(1)当为长轴端点时,椭圆的标准方程为:;(2)当为短轴端点时,椭圆的标准方程为:;说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因此要考虑两种状况例2 已知椭圆的离心率,求的值分析:分两种状况进展探讨解:当椭圆的焦点在轴上时,得由,得当椭圆的焦点在轴上时,得由,得,即满意条件的或说明:本题易出现漏解解除错误的方法是:因为与9的大小关系不定,所以椭圆的焦点可能在轴上,也可能在轴上故必需进展探讨例3 已知方程表示椭圆,求的取值范围解:由得,且满意条件的的取值范围是,且说明:本题易出现如下错解:由得,故的取值范围是出错的缘由是没有留意椭圆的标准方程中这个条件,当时,并不表示椭圆例4 已知表示焦点在轴上的椭圆,求的取值范围分析:根据已知条件确定的三角函数的大小关系再根据三角函数的单调性,求出的取值范围解:方程可化为因为焦点在轴上,所以因此且从而说明:(1)由椭圆的标准方程知,这是简单无视的地方(2)由焦点在轴上,知, (3)求的取值范围时,应留意题目中的条件例5 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程分析:关键是根据题意,列出点P满意的关系式解:如图所示,设动圆和定圆内切于点动点到两定点,即定点和定圆圆心间隔 之和恰好等于定圆半径,即点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:说明:本题是先根据椭圆的定义,断定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程这是求轨迹方程的一种重要思想方法2.焦半径及焦三角的应用例1 已知椭圆方程,长轴端点为,焦点为,是椭圆上一点,求:的面积(用、表示)分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限由余弦定理知: ·由椭圆定义知: ,则得 故 例2.已知椭圆内有一点,、分别是椭圆的左、右焦点,点是椭圆上一点求的最大值、最小值及对应的点坐标;分析:本题考察椭圆中的最值问题,通常探求变量的最值有两种方法:一是目的函数当,即代数方法二是数形结合,即几何方法本题若按先建立目的函数,再求最值,则不易解决;若抓住椭圆的定义,转化目的,运用数形结合,就能简捷求解解:如上图,设是椭圆上任一点,由,等号仅当时成立,此时、共线由,等号仅当时成立,此时、共线建立、的直线方程,解方程组得两交点、综上所述,点与重合时,取最小值,点与重合时,取最大值3.参数方程应用例1 求椭圆上的点到直线的间隔 的最小值分析:先写出椭圆的参数方程,由点到直线的间隔 建立三角函数关系式,求出间隔 的最小值解:椭圆的参数方程为设椭圆上的点的坐标为,则点到直线的间隔 为当时,说明:当干脆设点的坐标不易解决问题时,可建立曲线的参数方程例2 (1)写出椭圆的参数方程;(2)求椭圆内接矩形的最大面积分析:本题考察椭圆的参数方程及其应用为简化运算和削减未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题解:(1) (2)设椭圆内接矩形面积为,由对称性知,矩形的邻边分别平行于轴和轴,设为矩形在第一象限的顶点,则故椭圆内接矩形的最大面积为12说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便例3椭圆与轴正向交于点,若这个椭圆上总存在点,使(为坐标原点),求其离心率的取值范围分析:、为定点,为动点,可以点坐标作为参数,把,转化为点坐标的一个等量关系,再利用坐标的范围建立关于、的一个不等式,转化为关于的不等式为削减参数,易考虑运用椭圆参数方程解:设椭圆的参数方程是,则椭圆上的点,即,解得或,(舍去),又,又,说明:若已知椭圆离心率范围,求证在椭圆上总存在点使如何证明?4.相交状况下-弦长公式的应用例1 已知椭圆及直线(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程解:(1)把直线方程代入椭圆方程得 ,即,解得(2)设直线与椭圆的两个交点的横坐标为,由(1)得,根据弦长公式得 :解得方程为说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采纳的方法与处理直线和圆的有所区分这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程例2 已知长轴为12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长分析:可以利用弦长公式求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求解:(法1)利用直线与椭圆相交的弦长公式求解因为,所以因为焦点在轴上,所以椭圆方程为,左焦点,从而直线方程为由直线方程与椭圆方程联立得:设,为方程两根,所以, 从而(法2)利用椭圆的定义及余弦定理求解由题意可知椭圆方程为,设,则,在中,即;所以同理在中,用余弦定理得,所以(法3)利用焦半径求解先根据直线与椭圆联立的方程求出方程的两根,它们分别是,的横坐标再根据焦半径,从而求出5.相交状况下点差法的应用例1 已知中心在原点,焦点在轴上的椭圆与直线交于、两点,为中点,的斜率为0.25,椭圆的短轴长为2,求椭圆的方程解:由题意,设椭圆方程为,由,得,为所求说明:(1)此题求椭圆方程采纳的是待定系数法;(2)直线与曲线的综合问题,常常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题例2 已知椭圆,求过点且被平分的弦所在的直线方程分析一:已知一点求直线,关键是求斜率,故设斜率为,利用条件求解法一:设所求直线的斜率为,则直线方程为代入椭圆方程,并整理得由韦达定理得是弦中点,故得所以所求直线方程为分析二:设弦两端坐标为、,列关于、的方程组,从而求斜率:解法二:设过的直线与椭圆交于、,则由题意得得 将、代入得,即直线的斜率为所求直线方程为说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹(2)解法二是“点差法”,解决有关弦中点问题的题较便利,要点是巧代斜率(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”有关二次曲线问题也适用例3 已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线、斜率满意,求线段中点的轨迹方程 分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法解:设弦两端点分别为,线段的中点,则得由题意知,则上式两端同除以,有,将代入得(1)将,代入,得,故所求直线方程为: 将代入椭圆方程得,符合题意,为所求(2)将代入得所求轨迹方程为: (椭圆内局部)(3)将代入得所求轨迹方程为: (椭圆内局部)(4)由得 : , , 将平方并整理得, , , 将代入得: , 再将代入式得: , 即 此即为所求轨迹方程当然,此题除了设弦端坐标的方法,还可用其它方法解决例4 已知椭圆,试确定的取值范围,使得对于直线,椭圆上有不同的两点关于该直线对称分析:若设椭圆上,两点关于直线对称,则已知条件等价于:(1)直线;(2)弦的中点在上利用上述条件建立的不等式即可求得的取值范围解:(法1)设椭圆上,两点关于直线对称,直线与交于点的斜率,设直线的方程为由方程组消去得。于是,即点的坐标为点在直线上,解得将式代入式得,是椭圆上的两点,解得(法2)同解法1得出,即点坐标为,为椭圆上的两点,点在椭圆的内部,解得(法3)设,是椭圆上关于对称的两点,直线与的交点的坐标为,在椭圆上,两式相减得,即又直线,即。又点在直线上,。由,得点的坐标为以下同解法2.说明:涉及椭圆上两点,关于直线恒对称,求有关参数的取值范围问题,可以采纳列参数满意的不等式:(1)利用直线与椭圆恒有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式,建立参数方程(2)利用弦的中点在椭圆内部,满意,将,利用参数表示,建立参数不等式例5 已知是直线被椭圆所截得的线段的中点,求直线的方程分析:本题考察直线与椭圆的位置关系问题通常将直线方程与椭圆方程联立消去(或),得到关于(或)的一元二次方程,再由根与系数的关系,干脆求出,(或,)的值代入计算即得并不须要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是常常采纳的解:方法一:设所求直线方程为代入椭圆方程,整理得 设直线与椭圆的交点为,则、是的两根,为中点,所求直线方程为方法二:设直线与椭圆交点,为中点,又,在椭圆上,两式相减得,即直线方程为方法三:设所求直线与椭圆的一个交点为,另一个交点、在椭圆上,。 从而,在方程的图形上,而过、的直线只有一条,直线方程为说明:直线与圆锥曲线的位置关系是重点考察的解析几何问题,“设而不求”的方法是处理此类问题的有效方法若已知焦点是、的椭圆截直线所得弦中点的横坐标是4,则如何求椭圆方程?

    注意事项

    本文(椭圆经典例题分类教案.docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开