欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    新人教版八年级数学知识点总结归纳——任涛.docx

    • 资源ID:34998476       资源大小:114.54KB        全文页数:18页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    新人教版八年级数学知识点总结归纳——任涛.docx

    第十一章 三角形1、三角形的概念 由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。3、三角形的稳定性三角形的形态是固定的,三角形的这特性质叫做三角形的稳定性。三角形的这特性质在生产生活中应用很广,须要稳定的东西一般都制成三角形的形态。4、三角形的表示三角形用符号“”表示,顶点是A、B、C的三角形记作“ABC”,读作“三角形ABC”。5、三角形的分类三角形按边的关系分类如下: 不等边三角形三角形 底和腰不相等的等腰三角形 等腰三角形 等边三角形三角形按角的关系分类如下: 直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形 钝角三角形(有一个角为钝角的三角形)6、三角形的三边关系定理及推论三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。推论:直角三角形的两个锐角互余。三角形的一个外角等于和它不相邻的来两个内角的和。三角形的一个外角大于任何一个和它不相邻的内角。8、三角形的面积=×底×高9、多边形知识要点梳理(1)定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。(2)分类1:凸多边形、凹多边形 分类2:正多边形:各边相等,各角也相等的多边形叫做正多边形。 非正多边形:(3) 多边形的定理: n边形的内角和等于180°(n-2)。 随意凸形多边形的外角和等于360°。 n边形的对角线条数等于1/2·n(n-3)第十二章 全等三角形一、全等三角形 能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。1、全等三角形的表示和性质全等用符号“”表示,读作“全等于”。如ABCDEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。(2)全等三角形的周长相等、面积相等。(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定 边边边:三边对应相等的两个三角形全等(可简写成“SSS”) 边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”) 角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”) 角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)二、角的平分线:1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。 第十二章 轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,假如直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2. 把一个图形沿着某一条直线折叠,假如它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3、 轴对称图形和轴 对称的区分与联系 关于某直线对称的两个图形是全等形。 假如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 假如两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2.线段垂直平分线上的点与这条线段的两个端点的距离相等 3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结: 在平面直角坐标系中,关于xy轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于x轴对称的点的坐标为(x, -y).点(x, y)关于y轴对称的点的坐标为(-x, y)2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等,这一点称为三角形的外心。四、(等腰三角形)知识点回顾 .等腰三角形的两个底角相等。(等边对等角) .等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。(三线合一)2、等腰三角形的判定: 假如一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于60度 。2、等边三角形的判定: 三个角都相等的三角形是等边三角形。 有一个角是60度的等腰三角形是等边三角形。3. 在直角三角形中,假如一个锐角等于300,那么它所对的直角边等于斜边的一半。4、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区分三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。第十四章 整式乘除与因式分解一回顾知识点 1、幂的运算性质:am·anamn (m、n为正整数)同底数幂相乘,底数不变,指数相加 amn (m、n为正整数)幂的乘方,底数不变,指数相乘 (n为正整数)积的乘方等于各因式乘方的积 amn (a0,m、n都是正整数,且mn)同底数幂相除,底数不变,指数相减零指数幂的概念:a01 (a0)任何一个不等于零的数的零指数幂都等于l负指数幂的概念:ap (a0,p是正整数)任何一个不等于零的数的p(p是正整数)指数幂,等于这个数的p指数幂的倒数也可表示为:(m0,n0,p为正整数)2、单项式的乘法法则: 单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加多项式与多项式的乘法法则: 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加单项式的除法法则: 单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加3、乘法公式:平方差公式:(ab)(ab)a2b2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差完全平方公式:(ab)2a22abb2 (ab)2a22abb2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍4、因式分解:因式分解的定义把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解 驾驭其定义应留意以下几点: (1)分解对象是多项式,分解结果必需是积的形式,且积的因式必需是整式,这三个要素缺一不可;(2)因式分解必需是恒等变形; (3)因式分解必需分解到每个因式都不能分解为止弄清因式分解与整式乘法的内在的关系:因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式 二、娴熟驾驭因式分解的常用方法1、提公因式法(1)驾驭提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般状况下有三部分:系数一各项系数的最大公约数;字母各项含有的相同字母;指数相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式需留意的是,提取完公因式后,另一个因式的项数与原多项式的项数一样,这一点可用来检验是否漏项(4)留意点:提取公因式后各因式应当是最简形式,即分解到“底”;假如多项式的第一项的系数是负的,一般要提出“”号,使括号内的第一项的系数是正的 2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来运用;常用的公式:平方差公式: a2b2 (ab)(ab)完全平方公式:a22abb2(ab)2 a22abb2(ab)2 第十五章 分式一、分式的定义 一般地,假如A,B表示两个整数,并且B中含有字母,那么式子叫做分式,A为分子,B为分母。二、与分式有关的条件 分式有意义:分母不为0() 分式无意义:分母为0() 分式值为0:分子为0且分母不为0() 分式值为正或大于0:分子分母同号(或) 分式值为负或小于0:分子分母异号(或) 分式值为1:分子分母值相等(A=B) 分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质 分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。 字母表示:,其中A、B、C是整式,C0。四、分式的约分 定义:依据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。步骤:把分式分子分母因式分解,然后约去分子与分母的公因。五、最简分式的定义 一个分式的分子与分母没有公因式时,叫做最简分式。六、分式的通分 分式的通分:依据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。 最简公分母的定义:取各分母全部因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。确定最简公分母的一般步骤: 取各分母系数的最小公倍数; 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式; 相同字母(或含有字母的式子)的幂的因式取指数最大的。 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。七、分式的四则运算与分式的乘方 分式的乘除法法则: 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为: 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为 分式的乘方:把分子、分母分别乘方。式子 分式的加减法则:同分母分式加减法:分母不变,把分子相加减。式子表示为异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为 分式的加、减、乘、除、乘方的混合运算的运算依次:先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要留意敏捷,提高解题质量。八、负整数指数幂与科学记数法 () () (任何不等于零的数的零次幂都等于1) 若一个数x是0<x<1的数,则可以表示为(,即a的整数部分只有一位,n为整数)的形式,n的确定n=从左边第一个0起到第一个不为0的数为止全部的0的个数的相反数。如125=9个数字 若一个数x是x>10的数则可以表示为(,即a的整数部分只有一位,n为整数)的形式,n的确定n=比整数部分的数位的个数少1。如120 000 000=九、分式方程的解的步骤 去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程) 解整式方程,得到整式方程的解。 检验,把所得的整式方程的解代入最简公分母中: 假如最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;假如最简公分母不为0,则是原方程的解。 产生增根的条件是:是得到的整式方程的解;代入最简公分母后值为0。第十六章 二次根式1.二次根式:式子(0)叫做二次根式。2.最简二次根式:必需同时满意下列条件: 被开方数中不含开方开的尽的因数或因式; 被开方数中不含分母; 分母中不含根式。3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。(0)(0)0 (=0);4.二次根式的性质: (1)()2= (0); (2)5.二次根式的运算: (1)因式的外移和内移:假如被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式=·(a0,b0); (b0,a>0)(4) 有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的安排律以及多项式的乘法公式,都适用于二次根式的运算第十七章 勾股定理 1.勾股定理: 假如直角三角形的两直角边长分别为a,b,斜边长为c,那么a2b2=c2。2. 勾股定理逆定理: 假如三角形三边长a,b,c满意a2b2=c2。,那么这个三角形是直角三角形。3.直角三角形的性质 (1)、直角三角形的两个锐角互余。可表示如下:C=90°A+B=90° (2)、在直角三角形中,30°角所对的直角边等于斜边的一半。 4、直角三角形的判定 (1)、有一个角是直角的三角形是直角三角形。 (2)、假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 (3)、勾股定理的逆定理:假如三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。5、命题、定理、证明 (1)、命题的概念:推断一件事情的语句,叫做命题。 (2)命题的分类: 真命题(正确的命题), 假命题(错误的命题) 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。 定理:用推理的方法推断为正确的命题叫做定理。 证明:推断一个命题的正确性的推理过程叫做证明。6、三角形中的中位线 连接三角形两边中点的线段叫做三角形的中位线。 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。第十八章 四边形一、特别的四边形1四边形的内角和与外角和定理:(1)四边形的内角和等于360°;(2)四边形的外角和等于360°.2平行四边形的性质: 因为ABCD是平行四边形Þ3.平行四边形的判定: 4.矩形的性质: 因为ABCD是矩形Þ5. 矩形的判定: Þ四边形ABCD是矩形.6菱形的性质: 因为ABCD是菱形Þ7菱形的判定: Þ四边形四边形ABCD是菱形.8正方形的性质:因为ABCD是正方形Þ9正方形的判定: Þ四边形ABCD是正方形.10等腰梯形的性质: 因为ABCD是等腰梯形Þ 11等腰梯形的判定: Þ四边形ABCD是等腰梯形12梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半 二 定理:中心对称的有关定理1关于中心对称的两个图形是全等形.2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.三 公式: 1S菱形 =ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)2S平行四边形 =ah. a为平行四边形的边,h为a上的高)3S梯形 =(a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)第十八章 一次函数一.常量、变量: 在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。二、函数的概念: 函数的定义:一般的,在一个变化过程中,假如有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数三、 函数图象的定义:一般的,对于一个函数,假如把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象四、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。)2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。3、连线:(依据横坐标由小到大的依次把所描的各点用平滑的曲线连接起来)。五、函数有三种表示形式:(1)列表法 (2)图像法 (3)解析式法六、正比例函数与一次函数的概念: 一般地,形如y=kx(k为常数,且k0)的函数叫做正比例函数.其中k叫做比例系数。 一般地,形如y=kx+b (k,b为常数,且k0)的函数叫做一次函数. 当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.七、正比例函数的图象与性质: (1)图象:正比例函数y= kx (k 是常数,k0) 的图象是经过原点的一条直线,我们称它为直线y= kx 。 (2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。八、求函数解析式的方法: 待定系数法:先设出函数解析式,再依据条件确定解析式中未知的系数,从而详细写出这个式子的方法。1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0 2. 求ax+b=0(a, b是常数,a0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标3. 一次函数与一元一次不等式: 解不等式ax+b0(a,b是常数,a0) 从“数”的角度看,x为何值时函数y= ax+b的值大于0 4. 解不等式ax+b0(a,b是常数,a0) 从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围九、一次函数与正比例函数的图象与性质一次函数 概念假如y=kx+b(k、b是常数,k0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k0)也叫正比例函数. 图像一条直线性质k0时,y随x的增大(或减小)而增大(或减小);k0时,y随x的增大(或减小)而减小(或增大). 直线y=kx+b(k0)的位置与k、b符号之间的关系.(1)k>0,b0图像经过一、二、三象限;(2)k>0,b0图像经过一、三、四象限;(3)k>0,b0 图像经过一、三象限;(4)k0,b0图像经过一、二、四象限;(5)k0,b0图像经过二、三、四象限;(6)k0,b0图像经过二、四象限。一次函数表达式的确定求一次函数y=kx+b(k、b是常数,k0)时,须要由两个点来确定;求正比例函数y=kx(k0)时,只需一个点即可. 第十九章 数据的分析数据的代表:平均数、众数、中位数、极差、方差1解统计学的几个基本概念    总体、个体、样本、样本容量是统计学中特有的规定,精确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。    当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。    平均数、众数、中位数都是用来描述数据集中趋势的量。平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。    用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差最大值最小值。5. 方差     用“先平均,再求差,然后平方,最终再平均”得到的结果表示一组数据偏离平均值的状况,这个结果叫方差,计算公式是s2=(x1-)2+(x2-)2+(xn-)2;方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。18 / 18

    注意事项

    本文(新人教版八年级数学知识点总结归纳——任涛.docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开