压力检测与控制试验系统设计报告.doc
青岛理工大学自动化工程学院检测技术及控制仪表课程设计报告题目 压力检测及控制实验系统设计 专 业 班 级 姓 名 学 号 指导教师 2016 年 12 月 28 日压力检测及控制试验系统设计设 计 任 务1、 设计参数上位水箱尺寸:800×500×600mm,上位水箱离地200mm安装,通过直径为20mmPVC管道及其他设备相连,设备离地30mm,要求测量设备入口处压力。测量误差不超过压力示值±1%。2、设计要求(1)上位水箱通过水泵供水,通过变频器控制水泵转速;(2) 通过查阅相关设备手册或上网查询,选择压力传感器、调节器、调节阀、变频器、水泵等设备(包括设备名称、型号、性能指标等);(3)设备选型要有一定理论计算;(4)用所选设备构成实验系统,画出系统结构图;(5)列出所能开设实验,并写出实验目、步骤、要求等。课程设计评语设计报告成绩(30%)设计过程成绩(30%)答辩成绩(40%)总成绩摘 要压力参数指标在工业化生产中有着广泛应用,诸类仪表中,变送器应用最为广泛、普遍,变送器大体分为压力变送器与差压变送器。压力测量对于保障正常工业化生产有着重要意义,对于本测控电路设计,通过智能微压力(差压)变送器将物理型号变成电信号后,在经过模数转换芯片ADC0809输送到单片机中所进行硬件电路设计。通过80C51单片机编程设计,完成对硬件电路控制作用。ADC0809是美国国家半导体公司生产CMOS工艺8通道,8位逐次逼近式A/D模数转换器。然后连接LED显示器,显示测量时动态数据。本次课题设计最终结果是对输入信号进行显示及对比,而后输出最终结果,并且在LED上显示最终结果。关键词:WLY-KC微压力(差压)变送器,ADC0809转换器,压力传感器,A/D转换器,LED显示器ABSTRACT The pressure parameter index is widely used in industrial production, and the transmitter is widely used in all kinds of instruments. Pressure measurement is of great significance to guarantee the normal production of industrialization, for the design of measurement and control circuit, through the intelligent micro pressure (differential pressure) transmitter physical models into electrical signals, after analog-to-digital conversion chip ADC0809 delivered to the hardware circuit design of MCU in the. Through the 80C51 microcontroller programming, to complete the control of the hardware circuit. ADC0809 is produced by National Semiconductor Corporation Ns CMOS process 8 channel, the 8 bit successive approximation A/D analog to digital converter. Then connect the LED monitor to display the measured dynamic data. The final result of the design of the subject is to display and contrast the input signal, and then output the final results, and display the final results on the LED.KEY WORDS:WLY-KC micro pressure (differential pressure) transmitter, ADC0809 converter, pressure sensor, A/D converter, LED display 目 录前 言5一、系统结构61.1压力检测及控制试验系统结构图:71.2 总体结构设计思路:71.3一个完整压力检测系统包括:取压口;引压管路和压力检测仪表771.32一个简单压力检测系统示意图(下图)8二、方案设计及模块选择888变频器工作原理9变频器选型时要确定以下几点92.2.3变频器所选型号:10102.4 压力传感器选型10112.5.1 DDZ-III型调节器电路结构图:112.5.2 基型调节器PD控制规律图:112.6 调节阀:122.7 设计控制系统回路12三、具体硬件电路实现1313141516四、开设试验项目 应变式压力传感器特性实验16、实验目:16、实验仪器:17五、 课程设计总结17参考文献18 前 言随着科学技术发展及生产技术提高,传感器技术已经渗入日常生活之中。如压力传感器它已应用于医学、生活日用品之中。本设计是将压力传感器用于测量压力,但它不同及一般测力计,它具有调节控制功能,适用于有压力限制测量应用中。它应用所学集成电路与使用方法,使整个电路具有测压力及调节功能。压力测试及控制系统顾名思义就是测试压力或压强,当压力或压强超出一定范围自动控制调节。压力测试就是利用压力传感器将压力变成及其成线性关系电压,在一系列集成元件作用下,在显示器中显示出压力。整个设计之中显示电路最为复杂。由于需要数字显示,模数转换器、七段译码器、LED显示器使整个电路看起来复杂无比,但它比用表头测量更方便,更实用。当然器件选择也会使整个设计增色,它不但能提高电路性能,还能减少功耗。设计时主要采用中小规模集成电路实现,主要培养分析解决问题能力,提高设计电路,调整电路实验技能。一、系统结构1.1压力检测及控制试验系统结构图:系统结构图1.2 总体结构设计思路:第一步:根据课设要求选取合适器件,并通过相应理论计算进行选取第二步:进行控制系统回路连接第三步:在连接好相应地回路后,根据给定数值进行理论计算,用压力传感器对设备入口处压力进行测量,通过调节器使测得值与给定值进行比较,若测得值使测量误差超过压力示值±1%,则需对产生偏差进行比例、积分或微分处理后,输出调节信号控制执行器动作,改变调节阀阀芯与阀座间流通面积,同时控制变频器对水泵控制,调节水泵转速以达到适当进水速度,从而使测量误差不超过压力示值±1%。1.3一个完整压力检测系统包括:取压口;引压管路与压力检测仪表 压力检测系统示意图(下图) 系统示意图二、方案设计及模块选择 传感器输出电路是由单个传感器构成,由于压力变化使得电阻变化从而输出电压发生变化,它输出电压直接经放大电路放大及滤波之后分别送至报警系统与表头。表头是可以直接显示模拟量,所以得到电压信号不需要进行数模转换,只需要让电压直接控制表头指针偏转,然后规定好表头量程与单位变频器是把工频电源(50Hz)变换成各种频率交流电源,以实现电机变速运行设备,其中控制电路完成对主电路控制,整流电路将交流电变换成直流电,直流中间电路对整流电路输出进行平滑滤波,逆变电路将直流电再逆成交流电。变频调速是通过改变电机定子绕组供电频率来达到调速目。变频器电路一般由整流、中间直流环节、逆变与控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能与缓冲无功功率。变频器工作原理 我们知道,交流电动机同步转速表达式位: n60 f(1s)/p式中 n异步电动机转速; f异步电动机频率; s电动机转差率; p电动机极对数。 由上式可知,转速n及频率f成正比,只要改变频率f即可改变电动机转速,当频率f在050Hz范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节,是一种理想高效率、高性能调速手段。变频器选型时要确定以下几点: 1) 采用变频目;恒压控制或恒流控制等。 2) 变频器负载类型;如叶片泵或容积泵等,特别注意负载性能曲线,性能曲线决定了应用时方式方法。 3) 变频器及负载匹配问题; I.电压匹配;变频器额定电压及负载额定电压相符。 II. 电流匹配;普通离心泵,变频器额定电流及电机额定电流相符。对于特殊负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流与过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机变频器选型,其容量要稍大于普通电机选型。 5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器输出端安装输出电抗器。 6) 对于一些特殊应用场合,如高温,高海拔,此时会引起变频器降容,变频器容量要放大一挡。 变频器所选型号:ABB变频器ACS800标准规格:(通用型) 相数,电压,频率:三相380V 50/60Hz 过载电流额定:额定输出电流150%-1min 额定频率:50,60Hz 最高输出频率:参数设定可对应至500Hz水泵是一种面大量广通用型机械设备,它广泛地应用于石油、化工、电力冶金、矿山、选船、轻工、农业、民用与国防各部门,在国民经济中占有重要地位。据统计,我国泵产量达525.6万台。泵电能消耗占全国电能消耗21%以上。因此大力降低泵有能源消耗,对节约能源具用十分重大意义。近年来,我们泵行业设计研制了许多高效节能产品,如IHF、CQB、FSB、UHB等型号泵类产品,对降低泵能源消耗起了积极作用。 2.4 压力传感器选型应变式压力传感器是由弹性元件、应变片以及相应测量电路组成 非粘性应变式压力传感器是直接使用电阻丝(应变元件)在弹性元件上,且构成一个简单桥路粘贴式应变式压力传感器是将电阻丝或片粘贴在压力敏感元件上,当敏感元件经受压力作用而产生应变,使得粘贴在其上电阻丝或片电阻值发生相应变化在实际工业生产应用中,调节器是构成自动控制系统核心仪表,它基本功能是将来自变送器测量信号及给定信号相比较,并对由此产生片产进行比例、积分或微分处理后,输出调节信号控制执行器动作,以实现对不同被测或被控参数压力自动调节作用。 DDZ-III型调节器电路结构图:2.5.2 基型调节器PD控制规律图:2.6 调节阀:调节阀又称控制阀,是通用末端执行机构,通过接受调节控制单元输出控制信号,借助动力操作去改变流体流量。调节阀一般由执行机构与阀门组成。如果按其所配执行机构使用动力,调节阀可以分为电动、气动、液动三种,即以电为动力源电动调节阀,以压缩空气为动力源气动调节阀,以液体介质(如油等)压力为动力电液动调节阀。竺奥公司生产电动调节阀阀体可任意及竺奥公司生产电动执行器匹配,组合为电动调节阀。同时亦可及各种电动直行程及气动薄膜执行器联接匹配,并可根据各品牌执行器定做接口,2.7 设计控制系统回路三、具体硬件电路实现本系统中用到很多芯片需要双电源供电,所以我们设计了能够输出±5V稳定直流电压。这一部分电路用到器件有LM7805,LM7905,两个二极管IN4001.,与自制变压器。稳压管LM7805是三端稳压电路,它封装形式为T0220。它有一系列固定是输出电压 ,应用十分广泛,由于内部电流限制,以及过热保护与安全工作区保护,使它基本上不会损坏。它输出电流为100mA ,输出电压为5V,输出电压误差小于±5%,运行温度在0125范围。最大输入电压为35V。LM7905是三端固定式负稳压电路封装与安全措施与LM7805相似。输出电压为-5V,输出电压误差小于±5%,它输出电流为100mA,运行温度在070范围,最大输入电压-35V。二极管IN4001最大反相电压为50V,输出电流可达1A。电子系统为降低运行成本一般都使用220V工频交流供电,而电子设备内部使用都是稳恒直流电,因此,需要将交流电变换成直流电。本设计利用变压器将220V交流电变成10V交流电,该电压经过VD1与VD2整流,VD1 、VD2是IN4001,C1、C2滤波,LM7805与LM7905稳压为±5V后,提供给后续电路,使电路正常工作,电源电路原理图如图3所示。图1我门采用型号为SP20C-G501压力传感器,控制驱动电流稳定在1mA,则可以在一定压力范围内调节电桥平衡使输出电压在01mV。为得到1mA恒定电流,我们用LM317L连成了一个1mA恒流源。LM317L构成恒流源,输出电流为,式中是基准电压,是从调整端流出电流,通常<50uA,虽然也随VI及环境变化而变化,且也是Io一部分,但由于仅为78xx1%,及Io相比,Io可忽略。可见LM317L恒流效果较好。由于LM317=1.25V,其最小电压差为3V,因此输入电压VI达到4.25V,电路就能正常地工作。本设计中LM317L输入点压为5V。压降为3.75V,通过电流1mA,所以损耗功率为3.75mW。传感器部分电路原理图如图4所示。图 2从压力传感器出来电压信号很微弱,仅为1mV,而且易受工频影响,为了便于应用及减小干扰,我们将输出电压信号进行放大及滤波处理。我们采用仪用放大器LH0036作为第一级放大,是一种高精度放大器。其最大输入失调电压1mV,共模抑制比100dB,输入阻抗高达300,电压增益范围11000,输入电压范围±12V,输出短路时间连续,双电源供电,电源电压在±1v±18V范围内,我们采取±5V供电。它放大倍数可以由可调电阻控制,放大倍数计算公式如下:,为接在引脚4与7之间电阻。可以看到当电阻值50前级放大原则上放大倍率是500倍,但由于后面我们用到了有源滤波器,考虑到滤波效果,其放大倍数不好确定,所以前级放大我们在引脚4与7之间接可调电阻,以调整放大倍数,使总放大倍数为1000倍,这样从这一部分电路输出电压范围应是01V。为了防止工频对信号影响,我们对放大输出信号进行滤波。由于对信号幅值稳定要求比较严格,通频带范围内幅頻曲线应十分平稳,所以本设计选用巴特沃斯滤波器滤出10HZ以上频率,它是电子滤波器一种。其特点是通频带频率响应曲线最平滑,频率响应曲线最大限度平坦,没有起伏,而且超过频带宽度逐渐下降为零。在振幅对数对角频率波形图上,从某以边界频率开始,振幅随着角频率增加而逐渐减小,趋向负无穷大。它是唯一一个无论阶数,振幅对角频率曲线都保持同样形状滤波器。只不过滤波器阶数越高,在阻频带振幅衰减速度越快。本设计中,我们采用常用于有源滤波器放大器OPA2111,该芯片内部集成了两个运算放大器A与B。选择电容与电阻时,电容宜在微法数量级下,因此我们选定电容为0.01uF,再根据截止频率为10Hz,我们计算出电阻、与值,。选择、与时,为减小偏置电流影响,应尽可能使加到运放同相端对地直流电阻及加到反相端对地电阻基本相等。图3及反馈控制这部分电路是将采集到关于压力大小电信号显示成实际压力大小。我们将其显示在数码管。主要用到了ICL7135,CD4511,NE555定时器与数码管。为显示出压力大小,需将放大与滤波后模拟电压进行AD转换,得到数字信号,本设计中需要将输出数字量在数码管中显示,我们选用积分式A/D转换器ICL7135,它内部有将二进制转换为BCD码功能,故而免去了用一般A/D转换器还需将二进制数转换成BCD码所带来麻烦。将所得到压力大小,根据需求,通过离心水泵与电动调节阀反馈控制输出压力。 四、开设试验项目 应变式压力传感器特性实验 、实验目: 1、了解金属箔式应变片应变效应与性能。 2、掌握使用YJ-SL-I型实验仪设计电子秤方法。 、实验仪器: YJ-SL-I型实验仪、应变传感器实验模板(电桥、差动)、应变压力实验装置、连接线若干。 、实验内容: 1、用导线将YJ-SL-I型实验仪与应变传感器实验电桥模板及实验装置连接起来。检查电路无误后,打开电源开关。调节RW1旋钮,使输出为零。按顺序增加砝码数量,每次200g,记录每次加载后输出电压值U。再以相反次序将砝码逐一取下,记录输出电压。利用逐差法求出传感器灵敏度。即,S=。 2、利用应变压力传感器制作电子秤。将压力传感器电桥实验模板输出及差动放大器输入相连,差动模快输出及YJ-SL-I实验仪“测量”相连。当秤盘当秤盘中无任何重物时,调节调整旋钮使电压表读数为零。秤盘上加1000g砝码,调节差动放大器放大倍数旋钮,使电压表读数为1.000V。重复以上步骤,直至电压表读数及秤盘上砝码质量一致。 、注意事项: 1、必须在连接完实验装置后,才能打开电源开关。 2、实验完毕后,关闭电源,依次拆卸电路。 3、加放砝码注意要放在盘中部,勿使盘边缘被压斜到一边。五、 课程设计总结在本次课程设计制作过程中,收获颇多。自学能力大大提高。由一开始一无所知到最终设计成功,所需要知识除了来自课堂,更多是课外通过上网查询、向教师等多种渠道获得。锻炼了际问题实际操作与设计实践力,能够通过课程设计要求,合理选取器件,并且能够根据本课程设计通过对压力进行测量控制,若示数在误差范围外,能够根据自己设计控制系统进行调节、反馈,从而达到要求示值,会能够根据所学知识进行分析设计,本学期所学知识与力知识有一个很好总结与应用,握了压力课程设计原理与方法,高了独立分析问题、解决问题能力,还有就是在制作过程中遇到很多结合嵌套等各方面问题,多次修改最终将困难一一解决。通过这次设计不仅丰富了理论知识,更激发了创新精神,受益终生。参考文献【1】检测技术及仪表 第二版 武汉理工大学出版社【2】全国大学生电子设计竞赛训练教程【M】.电子工业出版社.2005-1. 【3】电子技术基础模拟部分(第四版)【M】.高等教育出版社.1996(2004重印).【4】模拟电子技术基础【M】高等教育出版社.2006-12.【5】数字电子技术基础【M】高等教育出版社.1998-12.【6】仪器仪表学报【J】第33卷第六期.2012.第 17 页