欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    八年级数学上册《第12章-轴对称》总复习教案及经典例题-新人教版.doc

    • 资源ID:35118688       资源大小:206.50KB        全文页数:7页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    八年级数学上册《第12章-轴对称》总复习教案及经典例题-新人教版.doc

    山东省邹平县实验中学八年级数学上册第12章 轴对称总复习教案及经典例题 新人教版一、教学目的与考点分析: 1.本章的课标要求是:(1)图形的轴对称:探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相互关系;欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物体的镜面对称,能利用轴对称进行图案设计;在同一直角坐标系中,感受图形轴对称变换后点的坐标的变化.(2)线段的垂直平分线:了解线段垂直平分线及其性质.(3)等腰三角形:了解等腰三角形的有关概念,探索并掌握等腰三角形的性质和一个三角形是等腰三角形的条件,了解等边三角形的概念并探索其性质;了解直角三角形的概念,探索并掌握直角三角形的性质和一个三角形是直角三角形的条件.2.本章的主要内容是围绕等腰三角形展开的.等腰三角形是继角、线段后接触到的第三个轴对称图形,它为后面学习等边三角形、直角三角形和特殊四边形做下铺垫,也是平面几何研究的主要对象,起着承前启后的作用.3.本章的重点是轴对称、轴对称变换、等腰三角形的性质和判定.难点是等腰三角形的性质和判定.掌握等腰三角形的性质和判定,并能应用这些知识是学好本章的关键.二、教学内容:(一)、复习 三角全等形条件(二)、教学内容知识网络图示基本知识提炼整理一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.2.线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线3.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.4.等腰三角形有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.5.等边三角形三条边都相等的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离相等.3.(1)点P(x,y)关于x轴对称的点的坐标为P(x,-y).(2)点P(x,y)关于y轴对称的点的坐标为P(-x,y).4.等腰三角形的性质(1)等腰三角形的两个底角相等(简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.5.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.三、有关判定1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.三个角都相等的三角形是等边三角形.4.有一个角是60°的等腰三角形是等边三角形.四、例1如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数 分析:根据等边对等角的性质,我们可以得到A=ABD,ABC=C=BDC,再由BDC=A+ABD,就可得到ABC=C=BDC=2A再由三角形内角和为180°,就可求出ABC的三个内角 把A设为x的话,那么ABC、C都可以用x来表示,这样过程就更简捷 解:因为AB=AC,BD=BC=AD, 所以ABC=C=BDC A=ABD(等边对等角) 设A=x,则 BDC=A+ABD=2x, 从而ABC=C=BDC=2x 于是在ABC中,有 A+ABC+C=x+2x+2x=180° 解得x=36° 在ABC中,A=35°,ABC=C=72°例2在等边三角形ABC中的AC延长线上取一点E,以CE为边做等边三角形CDE,使它与三角形ABC位于直线AE的同一侧,点M为线段AD的中点,点N为线段BE的中点。求证:三角形CNM为等边三角形。分析 由已知易证明ADCBEC,得BE=AD,EBC=DAE,而M、N分别为BE、AD的中点,于是有BN=AM,要证明CNM是等边三角形,只须证MC=CN,MCN=60o,所以要证NBCMAC,由上述已推出的结论,根据边角边公里,可证得NBCMAC证明:等边ABC和等边DCE,BC=AC,CD=CE,(等边三角形的边相等)BCA=DCE=60o(等边三角形的每个角都是60)BCE=DCA BCEACD(SAS)EBC=DAC(全等三角形的对应角相等)BE=AD(全等三角形的对应边相等)又BN=BE,AM=AD(中点定义)BN=AM NBCMAC(SAS)CM=CN(全等三角形的对应边相等) ACM=BCN(全等三角形的对应角相等)MCN=ACB=60oMCN为等边三角形(有一个角等于60o的等腰三角形是等边三角形)专题总结及应用一、用轴对称的观点证明有关几何命题例1 试说明在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.已知:在ABC中,C=90°,A=30°,如图所示.求证:BC=AB. 证明:如图所示.作出ABC关于AC对称的ABC.AB=AB.又CAB=30°,B=B=BAB=60°.AB=BB=AB又ACBB,BC=BC=BB=AB.即BC=AB.例2 如图所示,已知ACB=90°,CD是高,A=30°.求证BD=AB.证明:在ABC中,ACB=90°,A=30°,BC=AB,B=60°.又CDBA,BDC=90°,BCD=30°.BD=BC.BD=·AB=AB.即BD=AB.二、有关等腰三角形的内角度数的计算例3 如图所示,AB=AC,BC=BD=ED=EA,求A的度数.(分析)图形中有多个等腰三角形,因而有许多对相等的角,设定其中的某个角,再用这个角把另外的角表示出来,即可解决.解:AB=AC,BC=BD=ED=EA,ABC=C=BDC,ABD=BED,A=EDA.设A=,则EDA=,ABD=BED=2,ABC=C=BDC=3(根据三角形的外角性质).在ABC中,A=,ABC=ACB=3,由三角形内角和可得+3+3=180°,=,A=.A的度数为.例4 如图所示,在ABC中,D在BC上,若AD=BD,AB=AC=CD,求BAC的度数.解:AD=BD,AB=AC=CD,B=C=BAD,CAD=CDA.设B=C=BAD=,则CAD=CDA=2,BAC=3.在ABC中,BAC=3,B=C=,3+=180°,=36”,3=108°,即BAC=108°.BAC的度数是108°.三、作辅助线解决问题例5 如图所示,B=90°,AD=AB=BC,DEAC.求证BE=DC.证明:连接AE.EDAC,ADE=90°.又B=90°,在RtABE和RtADE中,RtABERtADE(HL),BE=ED.AB=BC,BAC=C.又B=90°,BAC+C=90°.C=45°.DEC=45°.C=DEC=45°.DE=DC,BE=DC.例6 如图所示,在ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G.求证EG=FG.证明:过E作EMAC,交BC于点M,EMB=ACB,MEG=F.又AB=AC,B=ACB.B=EMB,EB=EM.又BE=CF,EM=FC.在MEG和CFG中,MEGCFG(AAS).EG=FG.例7 如图所示,在ABC中,B=60°,AB=4,BC=2.求证ABC是直角三角形.(分析)欲证ABC是直角三角形,只需证明BCA=90°即可.证明:取AB的中点D,连接CD.BC=2,AB=4,BC=BD=AD=2.BCD=BDC.又B=60°,BCD=BDC=60°.DC=BD=DA.A=DCA.又BDC是DCA的一个外角,BDC=A+DCA=60°. A=30°,BCA=180°-B-A=180°-60°-30°=90°ABC是直角三角形.

    注意事项

    本文(八年级数学上册《第12章-轴对称》总复习教案及经典例题-新人教版.doc)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开