第二章热力学第二定律.doc
第二章 热力学第二定律;选择题G=0 的过程应满足的条件是(A) 等温等压且非体积功为零的可逆过程 (B) 等温等压且非体积功为零的过程 (C) 等温等容且非体积功为零的过程(D) 可逆绝热过程 答案:A在一定温度下,发生变化的孤立体系,其总熵(A)不变 (B)可能增大或减小(C)总是减小(D)总是增大答案:D。因孤立系发生的变化必为自发过程,根据熵增原理其熵必增加。对任一过程,与反应途径无关的是(A) 体系的内能变化 (B) 体系对外作的功 (C) 体系得到的功 (D) 体系吸收的热答案:A。只有内能为状态函数与途径无关,仅取决于始态和终态。下列各式哪个表示了偏摩尔量:(A) (B) (C) (D) 答案:A。首先根据偏摩尔量的定义,偏导数的下标应为恒温、恒压、恒组成。只有A和D符合此条件。但D中的不是容量函数,故只有A是偏摩尔量。氮气进行绝热可逆膨胀 (B) (C) A (D) 答案:B。绝热系统的可逆过程熵变为零。关于吉布斯函数G, 下面的说法中不正确的是(A)GW'在做非体积功的各种热力学过程中都成立 (B)在等温等压且不做非体积功的条件下, 对于各种可能的变动, 系统在平衡态的吉氏函数最小(C)在等温等压且不做非体积功时, 吉氏函数增加的过程不可能发生(D)在等温等压下,一个系统的吉氏函数减少值大于非体积功的过程不可能发生。答案:A。因只有在恒温恒压过程中GW'才成立。关于热力学第二定律下列哪种说法是错误的(A)热不能自动从低温流向高温(B)不可能从单一热源吸热做功而无其它变化(C)第二类永动机是造不成的(D热不可能全部转化为功答案:D。正确的说法应该是,热不可能全部转化为功而不引起其它变化关于克劳修斯-克拉佩龙方程下列说法错误的是(A) 该方程仅适用于液-气平衡 (B) 该方程既适用于液-气平衡又适用于固-气平衡(C) 该方程假定气体的体积远大于液体或固体的体积(D) 该方程假定与固相或液相平衡的气体为理想气体 答案:A关于熵的说法正确的是(A) 每单位温度的改变所交换的热为熵 (B) 可逆过程熵变为零 (C) 不可逆过程熵将增加 (D) 熵与系统的微观状态数有关答案:D。(A)熵变的定义其中的热应为可逆热;(B)与(C)均在绝热系统中才成立。在绝热条件下,迅速推动活塞压缩气筒内空气,此过程的熵变(A) 大于零 (B) 小于零 (C) 等于零 (D) 无法确定 答案:A。绝热不可逆过程熵要增加。氢气进行不可逆循环 (B) (C) (D) 答案:B。循环过程状态函数不变。氢气和氧气在绝热钢瓶中生成水(A) (B) (C) H (D) 答案:D。绝热钢瓶中进行的反应无热交换、无体积功,即QW0,故U0。此过程为绝热不可逆过程故S0。此过程恒容HU(pV)Vp,因p不等于零故H亦不为零。恒温、恒压不做其它的可逆过程G0,上述过程并非此过程。 下述过程,体系的何者为零?(A) 理想气体的等温膨胀 (B) 孤立体系的任意过程 (C) 在100,101325Pa下1mol水蒸发成水汽 (D) 绝热可逆过程答案:C。可逆相变为零。关于熵的性质, 下面的说法中不正确的是(A) 环境的熵变与过程有关 (B) 某些自发过程中可以为系统创造出熵 (C) 熵变等于过程的热温商(D) 系统的熵等于系统内各部分熵之和 答案:C。正确的说法应为熵变等于过程的可逆热温商。关于亥姆霍兹函数A, 下面的说法中不正确的是(A) A的值与物质的量成正比 (B)虽然A具有能量的量纲, 但它不是能量 (C)A是守恒的参量 (D)A的绝对值不能确定 答案:C关于热力学基本方程dU=TdS-pdV, 下面的说法中准确的是(A) TdS是过程热 (B)pdV是体积功(C) TdS是可逆热 (D)在可逆过程中, pdV等于体积功, TdS即为过程热 答案:D理想气体在自由膨胀过程中, 其值都不为零的一组热力学函数变化是(A) U、H、S、V (B)S、A、V、G (C) T、G、S、V (D)U、A、H、V答案:B。理想气体自由膨胀过程中不做功亦不放热,故U0,T0。在一绝热恒容箱中, 将NO(g)和O2(g)混合,假定气体都是理想的, 达到平衡后肯定都不为零的量是(A) Q, W, U (B) Q, U, H (C) H, S, G (D) S, U, W答案:C。此条件下Q、W和U都为零。由HU(pV)可见反应前后压力有变化故H不为零,微观状态数有变化故S不为零,GH(TS)亦不为零。在下列过程中, GA的是(A) 液体等温蒸发 (B) 气体绝热可逆膨胀 (C) 理想气体在等温下混合 (D) 等温等压下的化学反应答案:C。由GA(pV)可知若(pV)0则GA。一卡诺热机在两个不同温度之间的热源之间运转, 当工作物质为气体时, 热机效率为42%, 若改用液体工作物质, 则其效率应当(A) 减少 (B) 增加 (C) 不变 (D) 无法判断 答案:C理想气体绝热向真空膨胀,则(A) dS = 0,dW = 0 (B) dH = 0,dU = 0(C) dG = 0,dH = 0 (D) dU =0,dG =0 答案:B 对于孤立体系中发生的实际过程,下式中不正确的是(A) W = 0(B) Q = 0(C) dS > 0(D) dH = 0 答案:D理想气体经可逆与不可逆两种绝热过程,则 (A) 可以从同一始态出发达到同一终态。 (B) 不可以达到同一终态。 (C) 不能确定以上A、B中哪一种正确。(D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定。 答案:B 求任一不可逆绝热过程的熵变dS,可以通过以下哪个途径求得?(A)始终态相同的可逆绝热过程。(B)始终态相同的可逆恒温过程。(C)始终态相同的可逆非绝热过程。(D) B 和C 均可。答案:C在绝热恒容的系统中,H2和Cl2反应化合成HCl。在此过程中下列各状态函数的变化值哪个为零?(A) rHm (B) rUm (C) rSm (D) rGm 答案:B。因Q0,W0。 1mol Ag(s)在等容下由273.2K加热到303.2K。已知在该温度区间内Ag(s)的Cv,m=24.48J·K-1·mol-1则其熵变为:(A)2.531J·K-1 (B) 5.622J·K-1 (C) 25.31J·K-1 (D) 56.22J·K-1答案:A。理想气体经历等温可逆过程,其熵变的计算公式是:(A) S =nRTln(p1/p2) (B) S =nRTln(V2/V1) (C) S =nRln(p2/p1) (D) S =nRln(V2/V1) 答案:D 在标准压力下,90的液态水气化为90的水蒸汽,体系的熵变为:(A)S体0 (B)S体0 (C)S体0 (D)难以确定 答案:A。液态变为气态时,混乱度增加,故熵增加。在101.325kPa下,385K的水变为同温下的水蒸汽。对于该变化过程,下列各式中哪个正确:(A) S体+S环 > 0 (B) S体+S环 < 0 (C) S体+S环 = 0 (D) S体+S环的值无法确定答案:A。因该变化为自发过程。 在标准压力p$和268.15K时,冰变为水,体系的熵变S 体应:(A) 大于零 (B) 小于零 (C) 等于零 (D) 无法确定 答案:A。因固体变液体混乱度增加。.1mol理想气体从p1,V1,T1分别经:(1) 绝热可逆膨胀到p2,V2,T2;(2) 绝热恒外压下膨胀到p2,V2,T2,若p2 = p2 则: (A)T2= T2, V2= V2, S2= S2 (B)T2> T2, V2< V2, S2< S2(C)T2> T2, V2> V2, S2> S2 (D)T2< T2, V2< V2, S2< S2答案:C。恒外压膨胀较可逆膨胀做出的功要少,且绝热,故过程(2)内能的减少要小一些,所以T2> T2。终态压力相同因此V2> V2。又根据熵增原理,可判定S2> S2。理想气体在恒温条件下,经恒外压压缩至某一压力,此变化中体系的熵变S体及环境的熵变S环应为:(A) S体 > 0, S环 < 0 (B) S体 < 0, S环 > 0 (C) S体 > 0, S环 = 0 (D) S体 < 0, S环 = 0答案:B。理想气体恒温压缩混乱度减小,故熵减小;而理想气体恒温压缩时内能不变,得到的功要以热的形式释放给环境,故环境得到热S环 > 0。理想气体在绝热条件下,经恒外压压缩至稳态,此变化中的体系熵变S体及环境熵S环应为:(A) S体 > 0, S环 < 0 (B) S体 < 0, S环 > 0 (C) S体 > 0, S环 = 0 (D) S体 < 0, S环 = 0答案:C。该过程为绝热不可逆过程,故S体 > 0;又因绝热过程,故S环 = 0。在101.3kPa下,110的水变为110水蒸气,吸热Qp,在该相变过程中下列哪个关系式不成立?(A) S体 > 0 (B) S环不确定 (C) S体+S环 > 0 (D) G体 < 0 答案:B。环境的熵变是确定的,可由S环QpT来求算。 一个由气相变为凝聚相的化学反应在恒温恒容下自发进行,问下列各组答案中哪一个是正确的:(A) S体 > 0, S环 < 0 (B) S体 < 0, S环 > 0 (C) S体 < 0, S环 = 0 (D) S体 > 0, S环 = 0答案:B。反应由气相变为凝聚相熵减少,S体 < 0;自发过程的总熵变应增加,故S环 > 0。263K的过冷水凝结成263K的冰,则:(A)S < 0 (B)S > 0 (C) S = 0 (D) 无法确定 答案:A。恒温下液体变固体熵减少。理想气体由同一始态出发,分别经(1)绝热可逆膨胀;(2)多方过程膨胀,达到同一体积V2,则过程(1)的熵变S(1)和过程(2)的熵变S(2)之间的关系是:(A)S(1) > S(2) (B)S(1) < S(2) (C)S(1) = S(2) (D)两者无确定关系答案:B。绝热可逆过程S0,多方过程体积膨胀S0。从多孔硅胶的强烈吸水性能说明在多孔硅胶吸水过程中,自由水分子与吸附在硅胶表面的水分子比较,两者化学势的高低如何? (A) 前者高 (B) 前者低 (C) 相等 (D) 不可比较答案:A。化学势决定物质流动的方向,物质由化学势高的流向低的,自由水分子在多孔硅胶表面的强烈吸附表明自由水分子的化学势高。理想气体从状态I经自由膨胀到状态II,可用哪个热力学判据来判断该过程的自发性?(A)H (B) G (C)S隔离 (D) U 答案:C。理想气体自由膨胀不做功,亦不换热,故为隔离系统。理想气体从状态p1,V1,T 等温膨胀到p2,V2,T,此过程的A 与G 的关系为(A)A>DG (B)A<G (C)A=G (D)无确定关系 答案:C。因GHTS,AUTS,GApV,GAnRT0。在标准压力pº下,383.15K的水变为同温下的蒸汽,吸热Qp 。对于该相变过程,以下哪个关系式不能成立?(A) G<0 (B)H=Qp (C)S隔离<0 (D)S隔离>0 答案:C。隔离系统的熵不可能减少。 对临界点性质的下列描述中,哪一个是错误的:(A)液相摩尔体积与气相摩尔体积相等 (B)液相与气相的界面消失 (C)气化热为零 (D)固,液,气三相共存 答案:D下述说法中哪一个正确?当温度恒定时:(A)增加压力有利于液体变为固体 (B)增加压力不利于液体变为固体(C)增加压力不一定有利于液体变为固体 (D)增加压力与液体变为固体无关 答案:C对于平衡态的凝聚相体系,压力p表示什么含义?(A) 101.3kPa (B) 外压(C)分子间引力总和 (D)分子运动动量改变的统计平均值 答案:B 在,两相中均含有A和B两种物质,当达到平衡时,下列种哪情况是正确的: 答案:B 在273.15K,2p°时,水的化学势与冰的化学势之间的关系如何:(A) 前者高 (B) 前者低 (C) 相等 (D) 不可比较 答案:B单一组分的过冷液体的化学势比其固体的化学势:(A) 高 (B) 低 (C) 相等 (D) 不可比较 答案:A已知水的下列5种状态:(1) 373.15K, p$, 液态 (2) 373.15K, 2 p$, 液态 (3) 373.15K, 2 p$, 气态(4) 374.15K, p$, 液态 (5) 374.15K, p$, 气态下列4组化学势的比较中,哪个不正确?(A)2 >1 (B)5 >4 (C)3 >5 (D)3 >1 答案:B 等温等压下,在A和B组成的均相体系中,若A的偏摩尔体积随浓度的改变而增加,则B的偏摩尔体积将:(A) 增加 (B) 减小 (C) 不变 (D) 不一定 答案:B(根据吉布斯杜亥姆方程判断) 恒温时B溶解于A形成溶液。若纯B的摩尔体积大于溶液中B的偏摩尔体积,则增加压力将使B在A中的溶解度:(A) 增加 (B)减小 (C) 不变 (D) 不确定答案:A(可知增加压力,纯B的化学势增加的更多,则纯B的化学势将大于溶液中B的化学势,因此B的溶解度增大)热力学第三定律可以表示为:(A)在0K时,任何晶体的熵等于零 (B)在0K时,任何完整晶体的熵等于零(C)在0时,任何晶体的熵等于零 (D)在0时,任何完整晶体的熵等于零 答案:B ;问答题理想气体恒温膨胀做功时U0,故QW,即所吸之热全部转化为功。此与Kelvin说法有否矛盾?答:不矛盾。Kelvin的说法是:“不可能从单一热源吸热使之全部转化为功而不引起其它变化”。本例中,虽然热全部转化为功但却引起了系统的体积的变化。孤立系统从始态不可逆进行到终态S0,若从同一始态可逆进行至同一终态时S0。这一说法是否正确?答:不正确。熵是状态函数与变化的途径无关,故只要始态与终态一定S必有定值。孤立体系中的不可逆过程S0而可逆过程S0是勿庸置疑的。问题是孤立体系的可逆过程与不可逆过程若从同一始态出发是不可能达到相同终态。有人认为理想气体向真空膨胀是等熵过程。因为理想气体向真空膨胀时温度不变,故dU0;对外不做功,故pdV0。所以由dUTdS-pdV可得TdS0。因T0,故dS0。这样的分析正确吗?答:不正确。因为在dUTdS-pdV中p指系统自身的压力,而膨胀功等于零是指p(外)dV0。本例中p(外)p,所以pdV0,因此dS0。上述过程不是等熵过程。理想气体向真空膨胀是恒温过程,它的S可通过设计一个在相同的始态和终态下的恒温可逆过程来计算。理想气体向真空膨胀又是绝热过程,那么它的S是否也可通过设计一个在相同的始态和终态下的绝热可逆过程来计算呢?答:不可以。因为理想气体向真空膨胀是绝热不可逆过程,它与绝热可逆膨胀不可能达到同一终态。这是因为理想气体向真空膨胀时温度不变,而绝热可逆膨胀时对外做功消耗内能从而温度下降。dUTdS-pdV得来时假定过程是可逆的,为什么也能用于不可逆的pVT变化过程?答:因为在简单的pVT变化过程中,系统的状态只取决于两个独立的强度变量。当系统从状态1变化至状态2时,状态函数U、S、V的改变就是定值。dGSdT+Vdp那么是否101.325kPa、5的水变为冰时,因dT0、dp0,故dG0?冰在273K下转变为水,熵值增大,则S(QT)0。但又知在273K时冰与水处于平衡状态,平衡条件是dS=0。上面的说法有些矛盾,如何解释?答:孤立系统的平衡条件是dS0。上述过程非孤立系统,故熵值理应增大。下列求熵变的公式,哪些是正确的,哪些是错误的?(1) 理想气体向真空膨胀 (2) 水在298K,101325Pa下蒸发S(HG)T(3) 在恒温、恒压条件下,不可逆相变答:(1)正确。因熵为状态函数,其熵变的计算与恒温可逆膨胀相同。(2)正确。由GHTS知,若恒温则S(HG)T。(3)正确。此式为Gibbs-Helmhotz方程。使用条件是恒压,化学反应或相变都可用。进行下述过程时,系统的U、H、S和G何者为零?(1)非理想气体的卡诺循环 (2)隔离系统的任意过程 (3)在100,101325Pa下1mol水蒸发成水蒸气 (4)绝热可逆过程答:(1)循环过程所有状态函数均不变,其增量都为零。 (2)U0。 (3)可逆相变G0。 (4)S0改正下列错误(1)在一可逆过程中熵值不变; (2)在一过程中熵变是; (3)亥姆赫兹函数是系统能做非体积功的能量;(4)吉布斯函数是系统能做非体积功的能量; (5)焓是系统以热的方式交换的能量。答:(1)在绝热可逆过程中熵值不变。(2)在一过程中熵变是; (3)在恒温恒容条件下,亥姆赫兹函数是系统能做非体积功的能量;(4)在恒温恒压条件下,吉布斯函数是系统能做非体积功的能量;(5)焓没有明确的物理意义。在恒压且不做非体积功的情况下,焓的增量等于恒压热,即HQp。在标准压力下,将室温下的水向真空蒸发为同温同压的气,如何设计可逆过程?答:这可以有两种设计途径,一种是等压可逆过程变温到水的沸点,再恒温恒压可逆相变为气,此气再可逆降温至室温;另一条是先等温可逆变压至室温下水的饱和蒸气压,然后可逆相变为气。136.请说明下列公式的使用条件 (3分) (1) dS = dQ/dT (2)H = nCp,m(T2-T1) (3)G =H - TS答:(1)dS = dQ/dT :可逆过程 (2)H = nCp,m(T2-T1) :恒压且热容与温度无关 (3)G =H TS :恒温;是非题( )能发生的过程一定是自发过程。( )功可以全部转变成热,但热一定不能全部转化为功。( )从单一热源吸取热量而全部变为功是可能的。( )家里没有空调,可以打开冰箱门来代替空调达到降温的目的。( )所有绝热过程的Q为零,S也必为零。( )熵值不可能为负值。( )某一化学反应的热效应被反应温度T除,即得此反应的( )因为,所以只有可逆过程才有熵变;而,扬以不可逆过程只有热温商,没有熵变。( )物质的标准熵值是该状态下熵的绝对值。( )理想气体绝热可逆过程的S一定为零,G不一定为零。( )体系达到平衡时熵值最大,吉布斯函数最小。( )在绝热恒容的反应器中,H2和Cl2化合成HCl,此过程的为零。( )水在100,102325Pa下沸腾,吉布斯函数会减少。( )G代表在恒温恒压条件下,体系对外做功的最大能力。( )隔离体系的熵恒定不变。( )不可逆过程必为自发过程。( )rGm>0的反应,是不可能进行的反应。;填空题一个过程系统的熵变为S, 而另一个过程的始终态与前过程相同,但路径不同,则此过程系统的熵变应为_S_。(1分)因为状态函数与过程无关0 , 101.3 kPa下, 1 mol冰熔化成水, 吸热 6.02 kJ,此过程 G =0.液体水在100,下气化为水蒸气,此过程的U 0,H 0,S= 0,G = 0(填“”、“”或“=”101.3 kPa下, 1 kg 100 的水蒸气冷凝为同温度下的水,此过程 S(系统) <0, S(总) =0 ( 填 >, < 或 = ).;计算题(15分)101.3 kPa下, 1 mol的 100 水与 100 的大热源相接触, 经过两种不同的过程到达终态 100 , 101.3 kPa的水蒸气: (1)保持压力不变; (2)向真空膨胀.试分别计算这两种过程的 Q, W,U,H,S,A及G 并判断过程是否可逆.已知 100,101.3 kPa下水的气化热vapHm = 40.71 kJ.mol1, V(l) = 18.8×10-6 m3.mol1, V(g) = 3.02×102 m3.mol-1.解: (1) W = - V = - 101.3×103×(3.02×102-18.8×10-6) = - 3.06 kJ Q = H = 40.71 kJ U = Q + W = 40.71 - 3.06 = 37.65 kJ S = Q/T = 40.71×103/373 = 109.1 J.K A = U - TS = 37.65 - 40.71 = - 3.06 kJ G = 0 在沸点下蒸发,故为可逆过程.由 G = 0 也可判断. (2) W =0 U = 37.65 kJ H = 40.71 kJ S = 109.1 J.K A = - 3.06 kJ G = 0Q =U-W=37.65 kJ S(环) = - Q/T = - (U-W)/T = - 37.65×103/373 = - 100.9 J.K S(总) = S + S(环) = 109.1 - 100.9 = 8.2 J.K1 > 0 过程(2)为不可逆过程.(16分)1mol甲苯(l)在正常沸点383.2K可逆蒸发为蒸气,设蒸气可视为理想气体,求过程的Q、W、U、H、S体、S环、G和A。已知正常沸点处vapHm(甲苯,l)=33.3kJ·mol-1。解: 4分 2分 2分 2分 2分 2分 2分1mol 理想气体从300K ,100kPa下等压加热到600K,求此过程的Q、W、DU、DH、DS、DG。已知此理想气体300K时的Smq=150.0J·K1·mol1,cp,m=30.00 J·K1·mol1。(10分)1.解:WpDV=p(V2-V1) =pV2+pV1= -nRT2+ nRT1= nR(T1-T2) =1mol×8.315J·K1·mol1×(300K-600K)= -2494.5JDU= nCV,m (T2-T1) =1mol×(30.00-8.315)J·K1·mol1×(600K-300K)= 6506JDH= nCp,m (T2-T1) =1mol×30.00J·K1·mol1×(600K-300K)= 9000JQp= DH =9000JDS = nCp,m ln(T2/T1) =1mol×30.00J·K1·mol1×ln(600K/300K)= 20.79J·K1·mol1 由 Smq(600K)=Smq(300K)+DS=(150.0+20.79)J·K1·mol1=170.79J·K1·mol1DTS =n(T2S2T1S1)=1mol×(600K×170.79J·K1·mol1300K×150.0J·K1·mol1)57474JDG= DHDTS9000J57474J =48474J在一杜瓦瓶(绝热恒压容器)中 ,将 5 摩尔 40 的水与 5 摩尔0的冰混合,求平衡后的温度,以及此系统的 H 和 S。已知冰的摩尔熔化焓为 6024 J·mol 1,水的等压摩尔热容为 75.3 J·K1·mol1。(10分)解: 系统恒压绝热且不做非体积功,过程 H = Qp =0若冰全部熔化 H1 = n熔化Hm = 5mol×6024J·mol1 = 30120 J, 水降温到0时 H2= nCp,m(T2 T1) = 5mol×75.3J·K·mol1×(40K) = 15060J因H1+H2 = 15060 J >0 , 故冰不会全熔化, 系统温度为0。( 或者假设冰全部熔化并升温至t. 根据H=0, 可算出t<0,故合理值应为0)。 设冰的熔化量为n mol,过程的变化如下: 则 H =H1+H2 = n (6024 J·mol1) 15060J = 0, 得 n = 2.5 mol 所以冰熔化熵变 =55.12 J·K1水冷却过程的熵变 S 2= 51.44 J·K1所以 S=S1 + S2 = 3.68 J·K1将装有0.2 mol乙醚的微小玻璃泡放入308.15K、20 dm3的恒温密闭容器内,容器内充满100kPa、x mol氮气。将小泡打碎,乙醚完全汽化并与氮气混合。已知乙醚在100 kPa下沸点为308.15K,此时的蒸发焓为25.10 kJ·mol1。试求(1) 混合气体中乙醚的分压;(2) 分别计算氮气和乙醚的H、S、G。 (10分) 解:(1) = =0.2*8.314*308.15/20 25621 Pa = 25.62kPa (2) 变化过程中氮气的温度和分压没变,故 H=0J、S=0J·K1、G=0J。 乙醚的变化过程可设想为:乙醚(l,308.15K,100kPa) 乙醚(g,308.15K,100kPa) 乙醚(g,308.15K,p乙醚)于是:H=H1+H2=(0.2×25.10+0) kJ =5.02 kJDS=S1+S2= =J·K1 =18.56 J·K1 DG=G1+G2= 0+J = 697.8 J 或者采用下式计算 G=HTS在一个装有理想活塞的导热气缸中, 含有100、总压140kPa的氮气与水蒸气的混合气体0.400m3,氮的摩尔分数y(N2)=0.45. 今将该混合气体恒温可逆压缩到201.325kPa. 试求此过程的Q、W、U、H、S、A、G。已知水在100、101.325 kPa下的摩尔气化焓为40.67kJ/mol, 气体为理想气体,末态水的体积相对于气体的体积可忽略不计,且不考虑N2在水中的溶解。(12分)解:系统所经过程如下 其中: 终态: 气体当作理想气体处理, 整个过程恒温, 所以 H(N2)= U(N2)=0, H =H(N2) +H(H2O)= H(H2O)= = 0 (理想气体) += 1.6974mol * (-40.67kJ/mol) = - 69.03kJ U =H - pV=H - p3V3+ p1V1 = H - ( n(H2O,g)+n(N2)- ( n(H2O,g)+n(N2)RT= -69.03kJ - (8.2305-9.9279)*8.314*373.15kJ/1000= -63.76 kJ S =S(N2) +S(H2O) = = J.K-1 = -238.86 J.K-1 G=H - TS = -69.03 -373.15*(-0.23886) kJ =20.10 kJ A=U - TS = -63.76 -373.15*(-0.23886) kJ =25.37 kJ 过程恒温可逆:Q = TS = 373.15*(-0.23886) kJ =-89.13 kJ W=U - Q = -63.76 kJ +89.13 kJ = 25.37 kJ(15分)1 mol单原子分子理想气体,初态为 25 , 202.6 kPa: (1)向真空膨胀至体积为原来的2倍;(2)可逆绝热膨胀到 - 86 .分别计算这两种过程的 W, Q,U,H,S及G(已知初态时该气体的摩尔熵 Smq= 163.8 J.K.mol).解:(1) W = Q = U = H = 0 S = nR ln ( V2/V1) = 1×8.314×ln (2V/V) = 5.76 J.K G =H - TS = 0 - 298×5.76 = - 1717J = - 1.72 kJ (2) Q = 0 U = nCv( T2- T1)= (3/2)×8.314×(187-298) = - 1384 J = - 1.38 kJ W = U = - 1.38 kJ H = nCp( T2-T1)= (5/2)×8.314×(187-298) = - 2307 J = - 2.31 kJ S = 0 , G = H - ( T2S2- T1S1) =H - ST= - 2307 - 163.8×(187 - 298) = 15875 J = 15.9 kJ(20分) 5mol过冷水在-5, 101.3kPa下凝结为冰,计算过程的G, 并判断过程在此条件下能否发生。已知水在0, 101.3kPa下凝固热Hm,凝=-6.009J·K-1·mol-1,水的平均热容为75.3 J·K-1·mol-1, 冰的平均热容为37.6 J·K-1·mol-1。 G解: H2O(l) H2O(s) n=5.00mol, n=5.00mol, t1= -5 t1= -5 p=101.3kPa p=101.325kPa G3G1 H2O(l) H2O(s)G3 n=5.00mol, n=5.00mol, t1= 0 t1=0 P=101.3kP