高等数学上册教案26942.doc
如有侵权,请联系网站删除,仅供学习与交流高等数学上册教案26942【精品文档】第 57 页高等数学教案一、课程的性质与任务高等数学是计算机科学与技术;信息管理与信息系统两个专业的一门重要的基础理论课,通过本课程的学习,也是该专业的核心课程。要使学生获得“向量代数”与“空间解析几何”,“微积分”,“常微分方程与无穷级数”等方面的基本概论、基本理论与基本运算;同时要通过各个教学环节逐步培训学生的抽象概括能力、逻辑推理能力、空间想象能力和自学能力。在传授知识的同时,要着眼于提高学生的数学素质,培养学生用数学的方法去解决实际问题的意识、兴趣和能力。第一章:函数与极限教学目的与要求 18学时 1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。2.解函数的奇偶性、单调性、周期性和有界性。3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。4.掌握基本初等函数的性质及其图形。5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。6.掌握极限的性质及四则运算法则。7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。第一节:映射与函数一、集合1、 集合概念具有某种特定性质的事物的总体叫做集合。组成这个集合的事物称为该集合的元素表示方法:用A,B,C,D表示集合;用a,b,c,d表示集合中的元素1)2)元素与集合的关系: 一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。常见的数集:N,Z,Q,R,N+元素与集合的关系: A、B是两个集合,如果集合A的元素都是集合B的元素,则称A是B的子集,记作。如果集合A与集合B互为子集,则称A与B相等,记作若作且则称A是B的真子集。空集: 2、 集合的运算并集 :交集 : 差集 :全集I 、E 补集: 集合的并、交、余运算满足下列法则:交换律、 结合律、分配律 对偶律 ( 笛卡儿积A×B3、 区间和邻域开区间 闭区间 半开半闭区间 有限、无限区间邻域: a 邻域的中心 邻域的半径 去心邻域 左、右邻域二、映射1. 映射概念定义 设X,Y是两个非空集合,如果存在一个法则,使得对X中的每一个元素,按法则,在Y中有唯一确定的元素与之对应,则称为从X到Y的映射,记作其中 称为元素的像,并记作,即 注意:1)集合X;集合Y;对应法则 2)每个X有唯一的像;每个Y的原像不唯一 3) 单射、满射、双射2、 映射、复合映射三、函数1、 函数的概念:定义:设数集,则称映射为定义在D上的函数 记为 自变量、因变量、定义域、值域、函数值用、 函数相等:定义域、对应法则相等 自然定义函数;单值函数;多值函数、单值分枝. 例:) 2) 3) 符号函数4) 取整函数 (阶梯曲线)5) 分段函数 2、 函数的几种特性1) 函数的有界性 (上界、下界;有界、无界)有界的充要条件:既有上界又有下界。注:不同函数、不同定义域,有界性变化。 2) 函数的单调性 (单增、单减)在x1、x2点比较函数值 与的大小(注:与区间有关)3) 函数的奇偶性(定义域对称、与关系决定) 图形特点 (关于原点、Y轴对称) 4)函数的周期性(定义域中成立:)3、 反函数与复合函数 反函数:函数是单射,则有逆映射,称此映射为函数的反函数函数与反函数的图像关于对称 复合函数:函数定义域为D1,函数在D上有定义、且。则为复合函数。(注意:构成条件)4、 函数的运算 和、差、积、商(注:只有定义域相同的函数才能运算)5、 初等函数:1) 幂函数: 2)指数函数: 3) 对数函数 4)三角函数 5) 反三角函数以上五种函数为基本初等函数 6) 双曲函数 注:双曲函数的单调性、奇偶性。双曲函数公式反双曲函数:作业: 同步练习册练习一第二节:数列的极限一、数列 数列就是由数组成的序列。 1)这个序列中的每个数都编了号。2)序列中有无限多个成员。一般写成:缩写为例 1 数列是这样一个数列,其中也可写为:可发现:这个数列有个趋势,数值越来越小,无限接近0,记为1、 极限的定义:则称数列的极限为,记成 也可等价表述:1) 2)极限是数列中数的变化总趋势,因此与数列中某个、前几个的值没有关系。二、收敛数列的性质定理1:如果数列收敛,那么它的极限是唯一定理2 如果数列收敛,那么数列一定有界定理3:如果且a>0(a<0)那么存在正整数N>0,当n>N时,定理4、如果数列收敛于a那么它的任一子 数列也收敛,且收敛于a。第三节:函数的极限 一、极限的定义1、在点的极限1)可在函数的定义域内,也可不在,不涉及在有没有定义,以及函数值的大小。只要满足:存在某个使:。2)如果自变量趋于时,相应的函数值 有一个总趋势-以某个实数为极限 ,则记为 :。形式定义为:注:左、右极限。单侧极限、极限的关系2、的极限 设:如果当时函数值 有一个总趋势-该曲线有一条水平渐近线-则称函数在无限远点有极限。记为: 在无穷远点的左右极限:关系为:二、函数极限的性质1、 极限的唯一性2、 函数极限的局部有界性3、 函数极限的局部保号性4、 函数极限与数列极限的关系第四节:无穷小与无穷大一、无穷小定义定义:对一个数列,如果成立如下的命题: 则称它为无穷小量,即注: 1、的意义;2、可写成; 3、上述命题可翻译成:对于任意小的正数,存在一个号码N,使在这个号码以后的所有的号码,相应的与极限0的距离比这个给定的还小。它是我们在直观上对于一个数列趋于0的认识。定理1 在自变量的同一变化过程(或中,函数具有极限A的充分必要条件是,其中是无穷小。二、无穷大定义 一个数列,如果成立:那么称它为无穷大量。记成:。 特别地,如果,则称为正无穷大,记成特别地,如果,则称为负无穷大,记成注:无法区分正负无穷大时就笼统地称之为无穷大量。三、无穷小和无穷大的关系定理2 在自变量的同一变化过程中,如果为无穷大,则为无穷小;反之,如果为无穷小,且则为无穷大即:非零的无穷小量与无穷大量是倒数关系:当时:有注意是在自变量的同一个变化过程中第五节:极限运算法则1、无穷小的性质设和是无穷小量于是:(1)两个无穷小量的和差也是无穷小量: (2)对于任意常数C,数列也是无穷小量:(3)也是无穷小量,两个无穷小量的积是一个无穷小量。(4)也是无穷小量:(5)无穷小与有界函数的积为无穷小。2、函数极限的四则运算1、 若函数和在点有极限,则2、 函数在点有极限,则对任何常数成立3、若函数和在点有极限,则3、 若函数和在点有极限,并且,则 极限的四则运算成立的条件是若函数和在点有极限例:求下述极限4、 复合函数的极限运算法则定理6 设函数是由函数与复合而成,在点的 某去心邻域内有定义,若,且存在,当时,有,则第六节:极限存在准则 两个重要极限 定理1 夹逼定理 :三数列、和,如果从某个号码起成立:1),并且已知和收敛, 2),则有结论: 定理2 单调有界数列一定收敛。 单调增加有上界的数列一定收敛;单调减少有下界的数列一定收敛。例:证明:例: 证明:有界。求 的极限 第七节:无穷小的比较定义:若为无穷小且 高阶、低阶、同阶、k阶、等价 1、 若为等价无穷小则 2、 若 、且存在,则: 例: 第八节:函数的连续性与间断点一、 函数在一点的连续性函数在点连续,当且仅当该点的函数值 、左极限与右极限三者相等:或者:当且仅当函数在点有极限且此极限等于该点的函数值 。 其形式定义如下:函数在区间(a,b)连续指:区间中每一点都连续。函数在区间a,b连续时注意端点。注:左右连续,在区间上连续(注意端点) 连续函数的图像是一条连续且不间断的曲线 二、间断点 若:中有某一个等式不成立,就间断,分为:1、 第一类间断点:可去型:但跳跃型:即函数在点的左右极限皆存在但不相等,曲线段上出现一个跳跃。2 、第二类间断点:左极限与右极限两者之中至少有一个不存在(无穷型间断点和振荡型间断点) 例:见教材第九节:连续函数的运算与初等函数的连续性一、 连续函数的四则运算1.且,2且,3. 且, 反函数连续定理:如果函数是严格单调增加(减少)并且连续的,则存在它的反函数:并且也是严格单调增加(减少)并且连续的。注: 1)反函数的定义域就是原来的值域。2)通常惯用X表示自变量,Y表示因变量。反函数也可表成 复合函数的连续性定理: 设函数和满足复合条件,若函数在点x0连续;,又若函数在点连续,则复合函数在点连续。 注:复合函数的连续性可以保证极限号与函数符号的交换:从这些基本初等函数出,通过若干次四则运算以及复合,得到的种种函数统称为初等函数,并且:初等函数在其定义区间内连续。第十节:闭区间上连续函数的性质 一、 最大、最小值设函数:在上有界,现在问在值域中是否有一个最大的实数?如果存在,譬如说它是某个点的函数值 ,则记叫做函数在D上的最大值。 类似地,如果 中有一个最小实数,譬如说它是某个点的函数值,则记称为函数在上的最小值 。二、有界性有界性定理:如果函数在闭区间上连续,则它在上有界。三、零点、介值定理最大值和最小值定理:如果函数 在闭区间上连续则它在上有最大值和最小值,也就是说存在两个点和,使得亦即 若x0使,则称x0为函数的零点 零点定理:如果函数在闭区间上连续,且在区间的两个端点异号:则至少有一个零点,使中值定理:如果函数在闭区间上连续,则在上能取到它的最大值 和最小 值 之间的任何一个中间值。 作业:见课后各章节练习。第二章 导数与微分教学目的与要求 22学时 1、 理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。2、 熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。3、 了解高阶导数的概念,会求某些简单函数的n阶导数。4、 会求分段函数的导数。5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。一、导数概念()1、定义左导数右导数可以证明:可导连续。即可导是连续的充分条件。 连续是可导的必要条件。 左右导数(注:与左右极限关系)2、导数的几何意义曲线在点处切线:例1:讨论在x=0处可导性解: 在x = 0连续不存在在x = 0不可导例2:已知存在则例3:设函数可微, 则例4: 设 为使在x = x0 处可导,应如何选取常数a、b解:首先必须在x0连续(由得)存在 从而例5: = x (x-1)(x-2)(x-9) , 则例6:设在x = 0 领域内连续, 则 (分母0)例7:设函数 f (1+x) = a f ( x ) , 且 (a , b 0), 问 存在否?解:二、导数的求法 1、显函数导数求一个显函数的导数需解决: 基本初等函数导数(P64); 导数四则运算法则(P65); 复合函数与反函数求导法则(P66)。定理:在X有导数,在对应点u有导数,则复合函数在X处也有导数,例1:求解: 例2:求解: 例3:求解: 例4:求解:例5:求解: 例6:求解: 例7:求解: 例8: 求解: 例9:求解: 高阶导数、二阶:例10:, 求解: 先讲微分(后页)2、 隐函数导数参数方程导数 如方程F(x,y)=0确定了y=y(x),只需方程两边对x求导,注意y=y(x)例10:求下列隐函数的导数(1)设求解: 方程两边对x求导,(2)设是由方程所确定的隐函数, 求解: 由原方程知当x=0时, 方程两边对x求导。 ,将x=0,代入得:(3) 是由方程所确定的隐函数, 试求,。解: 方程两边对x求导: 方程两边再对x求导:由原方程知,当时,代入得再将,代入式,得 (4) 设求解: (5) 设是由方程组所确定的函数,求:。解:3、 分段函数的导数1) 设求:解:当 不存在,故 高阶导数(n阶)略, 例 2) 设在()上具有二阶连续导数,且,对函数 (1) 确定的值,使在()上连续(2) 对(1)中确定的,证明在()上 一阶导数连续解: 即当 在连续, 也就是在()连续 而在连续,即在连续三、 微分 一阶微分形式不变 (自变量) 如 (中间变量)例: , , 可导 可微第三章微分中值定理导数的应用教学目的与要求1掌握并会应用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。2理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。3 用二阶导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。4 握用洛必达法则求未定式极限的方法。5 道曲率和曲率半径的概念,会计算曲率和曲率半径。6 了解方程近似解的二分法及切线法。一、中值定理,泰勒公式(放入泰勒级数中讲)1 罗尔定理如满足:(1)在连续. (2)在可导. (3) 则至少存在一点 使例 设,则 在区间(-1,0)内,方程 有2个实根;在(-1,1)内有2个根例 设在0,1可导,且, 证明存在,使。证: 设在a,b可导, 存在使 即例 设在0,1可导,且, 证明存在 。解: 设,且 由罗尔定理 存在 使 即, 亦即例 习题6 设(复合函数求导)2、 拉格朗日中值定理如满足:在a,b连续;在(a,b)连续,则存在使。推论: 如果在区间I上,则 如果在区间I上, 在单增(减)例对任意满足的x, 都有设 例 设,证明求导证明作业:见各章节课后习题。二、洛必达法则未定形:如下的函数极限都是未定形。 1、型: 如:型:2、型: 如:3、型: 如:4、型:如:5、 型: 如:6、 型: 如:7、 型: 如:它们的计算不能用函数极限的四则运算法则,且它们只表示类型,没有具体意义。 1、 ()型的洛必达法则(同理)定理:对函数和,如果:(1), (2)在某个邻域内(后)有导数和,且;(3)存在(或无穷),则成立:例:1) 2) 3) 例: 1) 2) 3) (>0)3、其它类型1) 2) 3) 4) 解法同3) 例 : 1) 2) 3) 4) 三、泰勒公式 一、多项式: 在点的各阶导数: 得:二、泰勒中值定理:如果函数在含有的某个开区间有直到阶的导数,则对任一有:1、(N阶泰勒公式)称为余项。(1)( 在与之间)拉格朗日型余项(2) 皮亚诺余项。2、当得麦克劳林公式:三、常见函数的泰勒展开1) 2) 3) 四、函数的性态1、极值1)定义:如在邻域内,恒有, ,则称为函数的一个极大(小)值。可能极值点, 不存在的点与的点。(驻点)驻点 极值点2)判别方法、导数变号。 极小值极大值、,例1、 设满足关系式,且, ,则在点处 A A、取得极大值 B、取得最小值 C、在某邻域内单增 D、在某邻域内单减例2已知函数对一切满足 如,则 A A、 是的极小值B、是的极大值 C、是曲线的拐点D、不是的极值,也不是曲线 的拐点。例3 设函数在的某邻域内可导,则是的极 大 值。2、函数的最大值与最小值(1)求出内可能的极值点,不需判别极大还是极小,求出它们的函数值,再与端点的函数值进行比较,其中最大的(小)为最大(小)值。(2)在内可能极值点唯一,如是极小值则为最小值;如是极大值则为最大值。 (3)如分别为最小, 最大值。(4)实际问题据题意可不判别。 例1、 在抛物线上的第一象限部分求一点P,过P点作切线,使该切线与坐标轴所围成的三角形面积最小。 解:设切点为,切线方程为即 三角形面积:令 (唯一) 故 为所求点3、曲线的凹凸、拐点及渐近线 在I上可导 如则曲线是凹(凸)的, 在连续曲线上凹凸部分的分界点称为曲线的拐点。 可能的拐点和不存在的点例1、 设,试讨论的性态。x(-,-2)-2(-2,0)0(0,1)1(1,+ )y+0-间断+0+y-0+y 单调增上凸极大值 单减上凸单增上凸拐点(1,0) 单增下凸渐近线如 则称为水平渐近线如 则称为垂直渐近线渐近线可能没有,或多条。例2、求渐近线(斜渐近线不讨论)解: 为水平渐近线 垂直渐近线例2、 曲线的渐近线有 4 条4证明不等式(1)利用中值定理(R,L);(2)利用函数单调性;(3)利用最值;(4)引入辅助函数把常值不等式变成函数不等式;(5)利用函数凹凸性;(6)利用泰勒公式。例1、 当,试即证:证: 设,在连续,可导,由拉格朗日中值定理 即 例2、设,证明证: 设单增,当设 单增,当例3、当证明 证: 令 令得 驻点唯一, 极小 为最小值即 例4、 当 证明 证: 设 令 , 驻点唯一当 , 在上最大值为 ,最小值为例5、 设,证明证明:即 证 设 时 单减 当 即 例6、 设在上可导,且单调减,证明: ,。 证: 令 单调减 ,即单调减 即 作业:见课后习题第四章不定积分教学目的与要求1理解原函数概念、不定积分和定积分的概念。2 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。3 求有理函数、三角函数有理式和简单无理函数的积分。一、一元函数积分的概念、性质与基本定理 1、原函数、不定积分 在区间上,如,称为的导函数,称为的原函数,原函数与导函数是一种互逆关系。 如为的一个原函数,则为的全体原函数。记为,即=不定积积分性质(1) 或(2) (3) (4) 原函数与导函数有互逆关系,由导数表可得积分表。例、已知是的一个原函数, 求:解:例、的导函数是 ,则的原函数,(、为任意常数)例、在下列等式中,正确的结果是 C A、 B、C、 D、例、2、计算方法10 换元法第一类换元法(凑微分法)常用凑微分形式 例:1、2、 3、4、5、6、7、8、9、10、11、12、 13、14、15、16、17、18、19、 解:20、解:21、22、设,则二第二换元法定理2 除了凑微分法外其它常用变量代换(1)被积函数中含有二次根式,令,令,令如是配方1例1、令xt 解:原式 例2、二种解法(2)被积函数中含一般根式例3、解:令原式例4、令原式例5、解:令 原式 20分部积分<定理>如、均具有连续的导函数,则例1、例2、例3、例4、例5、例6、例7、例8、例9、例10、例11、30有理函数的积分 有理函数的积分方法:真分式部分分式 部分分式: 其中:确定常数的值;再积分。例: 1) 2) 3) 4) 5)解: 令 令 6) 40 三角有理式积分令 7、8、9、设的原函数恒正,且,当,有,求解: 由得C=1例:1) 2) 3) 4) 5) 作业:见课后习题第五章 定积分的概念教学目的与要求:1 解变上限定积分定义的函数,及其求导数定理,掌握牛顿莱布尼茨公式。2 解广义积分的概念并会计算广义积分。3掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力做功、引力、压力和函数的平均值等)。一、定义及性质<定义>:, 注意(1)积分区间有限,被积函数有界; (2)与“分法”、“取法”无关; (3)定积分的值与积分变量的选取无关 (4)在有界是在可积的必要条件,在连续是在可积的充分条件。<几何意义>:在几何上表示介于,之间各部分面积的代数和。补充规定 <性质>性质(1)(9)(1-7省略)其中(8)为估计定理:在,则 (9)中值定理:如在连续,使例1利用定积分几何意义,求定积分值 上式表示介于, , , 之间面积例2、(估计积分值) 证明 证:在 上最大值为,最小值为2二、基本定理 牛顿莱伯尼兹公式 10变上限积分基本定理:设在连续,为上任意一点,则是可导函数,且 即说明为的一个原函数。例3、已知, 求:解:例4、例5、有极大值的点为 D A. B. C. D. 例6、如 ,则 B A. B. C. D.例7、 设在上连续,且证明:若f(x)为偶函数,则F(x)也是偶函数。证: 20 定积分计算 牛顿莱伯尼兹公式<定理>设在连续。为在上的任意一个原函数,则有 定积分换元法与分部积分法30 奇偶函数在对称区间积分性质,周期函数积分性质(1) 在连续,当为偶数,则当为奇函数,则(2) ,以T为周期说明在任何长度为T的区间上的积分值是相等的。例9、原式 例10、例11、例12、设则 A、 B、 C、 D、例13、法一 设法二设原式例14、设为连续函数,且 求解: 设则两边积分例15、(、在连续,且求、的表达式。答案: 例16、设,求解:令 例17、设求解:例18、已知在上二阶可导,且,及求解:原式例19、设在连续证明:证:右边 =例20、设求解:例21、设连续,且求,并讨论在处连续性解:得 令 在连续即在连续例22、试证方程在内有且仅有一实根证:设在连续且:由介值定理,使F()=0即F(x)=0有根又 ,单增 根唯一例23、设在,连续试证:内至少一点,使证:设则在可导中值 在上满足罗尔定理条件至少存在一点,使即亦即 例24、例25:设在连续,可导,且,证明在内,有证:在单调减,故作业:各章节课后习题。第六章 定积分应用1°平面图形面积 ()直角坐标:例1:求抛物线及其点和处的切线所围成图形的面积解:在点处,切线方程 在点处,切线方程 得交点(ii)极坐标例2、求由曲线所围图形公共部分的面积解:两曲线的交点 2°旋转体体积由所围平面图形绕轴旋转一周所生成的立体体积,由所围平面图形绕旋转一周所得旋转体体积例3、过点作抛物线的切线,求该切线与抛物线及轴所围平面图形绕轴旋转而成的旋转体体积解:设切点为切线方程Q 切点在切线上,(3,1)0 1 2 3 切线方程:30平面曲线弧长(1) 曲线: (2) (3) 例 求下类平面曲线的弧长1. 曲线相应于的一段2. 心形线的全长 3. 摆线 的一拱解:1. 2. 3. 40向变力沿直线作功,液体的水压力 作业见课后练习第七章 空间解析几何教学目的与要求 14学时 1 解空间直角坐标系,理解向量的概念及其表示。2 握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。3 解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。4 掌握平面方程和直线方程及其求法。5 会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。6 会求点到直线以及点到平面的距离。7 理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。8 了解空间曲线的参数方程和一般方程,了解空间曲线在坐标平面上的投影,并会求其方程10向量及其线性运算向量:有大小、方向的量。向量相等:大小、方向单位向量、零向量向量的坐标表达式及其运算1) 向量的加法、减法满足:交换律、结合律。平行四边形、三角形法。2) 向量的数乘满足:结合律、分配律3) 两向量平行的充要条件:4) 空间直角坐标系(右手坐标系)5) 利用坐标作向量的线性运算1) 向量的坐标向量表示2) 对应坐标运算。例:书上例题。6) 向量的模、方向角投影1)的模与两点间的距离公式。例4:1) 方向角与方向余弦例: 例7、82) 向量在轴上的投影1) 2) 3) 20向量的数量积的向量积1)向量积性质:应用:(i) (ii) (iii)例1、习题4,1选择题(1)(2)(3) 2 填空题(3)(4)(5)例2、解:(2)向量积 右手定则即注意 应用(i)(ii)(iii)如即利用向量积求出同时垂直两个已知矢量的矢量。例3、习题4,5,2(4)例3、 设知量满足,则解: 30平面及其方程已知平面p过点M0(x0、y0、z0),为p的法矢量。1> 点法式:A(x-x0)+B(y-y0)+C(z-z0)=02> 一般式:Ax+By+Cz+D=0,A、B、C不全为零。3> 截距式:,a,b,分别为平面在x轴、y轴、z轴上的截距。点M0(x0、y0、z0)到平面Ax+By+Cz+D=0的距离为求通过点P(2,-1,-1),Q(1,2,3)且垂直于平面2x+3y-5z+6=0的平面方程。解 已知平面的法矢量取所求平面为:9(x-2)-(y+1)+3(z-1)=0即:9x-y+3z-16=0解:(1)解法一:设平面方程:x+By+D=0将点M1(2,-1,0),M2(3,0,5)分别代入得平面方程为:xy3=0解法二:, 取-(x2)+(y+1)=0得平面方程:xy3=0(2)设平面方程为y+Cz+D=0即得40直线及其方程<1> 空间直线的一般方程L:<2> 点向式(对称式)直线过点M0(x0、y0、z0),为L方向向量则L:<3>参数式L: t为参数L1L2L1L250直线与平面关系<1> L即<2> L<3> 点P到直线L的距离,L的方向向量,M0为L上一点例3、 习题4 2、(7)、(8)解(7)直线即所求平面法向量由点法式 -(x1)+3(y2)+(z+1)=0即x3yz+3=0(8)设平面方程为,得 ®点代入平面,得:所求平面<4>平面束方程直线L:则为过直线L的除平面外的平面束方程例 一平面过直线L:,且在轴有截距,求它的方程解:过直线L的平面束方程为:即据题意代入平面束方程,得:习题4 , 2 ,(9)例已知两直线方程,则过且平行的平面方程是解: 过的平面束方程:即由平行 得所求方程为:例已知平面直线(1)直线和平面是否平行?(2)如直线与平面平行,则求直线与平面的距离,如不平行,则求与的交点。(3)求过直线且与平面垂直的平面方程解:法矢量的方向向量, 取 不平行解一、得交点(1,0,1)解二、将化为点向式,(在中令,得,即上的一点),化为参式代入过直线的平面束方程:即所求平面:60曲面及其方程常用二次曲面的方程及其图形1、球面:设是球心,R是半径,是球面上任一点,则,即2、椭球面3、旋转曲面设L是x0z平面上一条曲线,L绕z旋转一周所得旋转曲面:得例1、 称为旋转抛物面旋转双曲面:,(单)4、椭圆抛物面 5、单叶双曲面 6、双叶双曲面 7、二次锥面 圆锥面 8、柱面 抛物柱面 椭圆柱面 圆柱面 60空间曲线及曲线在三个坐标面上投影方程一般式曲线 在三坐标面上投影方程在x0y面上投影曲线方程:在 中消去z,再与z=0联立。其他坐标平面上的投影曲线方程求法类似。