数学教案 圆心角、弧、弦、弦心距之间的关系.docx
-
资源ID:35332747
资源大小:13.89KB
全文页数:7页
- 资源格式: DOCX
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
数学教案 圆心角、弧、弦、弦心距之间的关系.docx
数学教案 圆心角、弧、弦、弦心距之间的关系在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容。这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性。下面是小编整理了数学教案 圆心角、弧、弦、弦心距之间的关系,希望对你有帮助。数学教案-圆心角、弧、弦、弦心距之间的关系数学 第一课时 圆心角、弧、弦、弦心距之间的关系 教案(一)教学目标 :(1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.教学重点、难点:重点:圆心角、弧、弦、弦心距之间关系定理的推论.难点:从感性到理性的认识,发现、归纳能力的培养.教学活动设计教学内容设计(一)圆的对称性和旋转不变性学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.引出圆心角和弦心距的概念:圆心角定义:顶点在圆心的角叫圆心角.弦心距定义:从圆心到弦的距离叫做弦心距.(二)圆心角、弧、弦、弦心距之间的关系应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.(三)剖析定理得出推论问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)举出反例:如图,aob=cod,但ab cd, .(强化对定理的理解,培养学生的思维批判性.)问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)(四)应用、巩固和反思例1、如图,点o是epf的平分线上一点,以o为圆心的圆和角的两边所在的直线分别交于点a、b和c、d,求证:ab=cd.解(略,教材87页)例题拓展:当p点在圆上或圆内是否还有ab=cd呢?(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)练习:(教材88页练习)1、已知:如图,ab、cd是o的两条弦,oe、of为ab、cd的弦心距,根据本节定理及推论填空: .(1)如果ab=cd,那么_,_,_;(2)如果oe=og,那么_,_,_;(3)如果 =,那么_,_,_;(4)如果aob=cod,那么_,_,_.(目的:巩固基础知识)2、(教材88页练习3题,略.定理的简单应用)(五)小结:学生自己归纳,老师指导.知识:圆的对称性和旋转不变性;圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.能力和方法:增加了证明角相等、线段相等以及弧相等的新方法;实验、观察、发现新问题,探究和解决问题的能力.(六)作业 :教材p99中1(1)、2、3.数学第二课时 圆心角、弧、弦、弦心距之间的关系教案 (二)教学目标 :(1)理解1° 弧的概念,能熟练地应用本节知识进行有关计算;(2)进一步培养学生自学能力,应用能力和计算能力;(3)通过例题向学生渗透数形结合能力.教学重点、难点:重点:圆心角、弧、弦、弦心距之间的相等关系的应用.难点:理解1° 弧的概念.教学活动设计:(一)阅读理解学生独立阅读p89中,1°的弧的概念,使学生从感性的认识到理性的认识.理解:(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(3)圆心角的度数和它们对的弧的度数相等.(二)概念巩固1、判断题:(1)等弧的度数相等( );(2)圆心角相等所对应的弧相等( );(3)两条弧的长度相等,则这两条弧所对应的圆心角相等( )2、解得题:(1)度数是5°的圆心角所对的弧的度数是多少?为什么?(2)5°的圆心角对着多少度的弧? 5°的弧对着多少度的圆心角?(3)n°的圆心角对着多少度的弧? n°的弧对着多少度的圆心角?(三)疑难解得对于弧相等;弧的长度相等;弧的度数相等;圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.特别是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.(四)应用、归纳、反思例1、如图,在o中,弦ab所对的劣弧为圆的 ,圆的半径为2cm,求ab的长.学生自主分析,写出解题过程,交流指导.解:(参看教材p89)注意:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要特别关注和指导.反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.例2、如图,已知ab和cd是o的两条直径,弦ceab, =40°,求bod的度数.题目从“分析解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.(解答参考教材p90)题目拓展:1、已知:如上图,已知ab和cd是o的两条直径,弦ceab,求证: = .2、已知:如上图,已知ab和cd是o的两条直径,弦 = ,求证:ceab.目的:是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.(五)小节(略)(六)作业 :教材p100中4、5题.探究活动我们已经研究过:已知点o是bpd的平分线上一点,以o为圆心的圆和角的两边所在的直线分别交于点a、b和c、d,则ab=cd ;现在,若o与epf的两边所在的直线分别交于点a、b和c、d,请你结合图形,添加一个适当的条件,使op为bpd的平分线.解(略)ab=cd; =.(等等)