高中数学竞赛专题讲座(解析几何).doc
如有侵权,请联系网站删除,仅供学习与交流高中数学竞赛专题讲座(解析几何)【精品文档】第 66 页高中数学竞赛专题讲座(解析几何)一、基础知识1椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF1|+|PF2|=2a (2a>|F1F2|=2c).第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0<e<1)的点的轨迹(其中定点不在定直线上),即(0<e<1).第三定义:在直角坐标平面内给定两圆c1: x2+y2=a2, c2: x2+y2=b2, a, bR+且ab。从原点出发的射线交圆c1于P,交圆c2于Q,过P引y轴的平行线,过Q引x轴的平行线,两条线的交点的轨迹即为椭圆。2椭圆的方程,如果以椭圆的中心为原点,焦点所在的直线为坐标轴建立坐标系,由定义可求得它的标准方程,若焦点在x轴上,列标准方程为 (a>b>0),参数方程为(为参数)。若焦点在y轴上,列标准方程为 (a>b>0)。3椭圆中的相关概念,对于中心在原点,焦点在x轴上的椭圆a称半长轴长,b称半短轴长,c称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a, 0), (0, ±b), (±c, 0);与左焦点对应的准线(即第二定义中的定直线)为,与右焦点对应的准线为;定义中的比e称为离心率,且,由c2+b2=a2知0<e<1.椭圆有两条对称轴,分别是长轴、短轴。4椭圆的焦半径公式:对于椭圆1(a>b>0), F1(-c, 0), F2(c, 0)是它的两焦点。若P(x, y)是椭圆上的任意一点,则|PF1|=a+ex, |PF2|=a-ex.5几个常用结论:1)过椭圆上一点P(x0, y0)的切线方程为2)斜率为k的切线方程为;3)过焦点F2(c, 0)倾斜角为的弦的长为6双曲线的定义,第一定义:满足|PF1|-|PF2|=2a(2a<2c=|F1F2|, a>0)的点P的轨迹;第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。7双曲线的方程:中心在原点,焦点在x轴上的双曲线方程为参数方程为(为参数)。焦点在y轴上的双曲线的标准方程为8双曲线的相关概念,中心在原点,焦点在x轴上的双曲线(a, b>0),a称半实轴长,b称为半虚轴长,c为半焦距,实轴的两个端点为(-a, 0), (a, 0). 左、右焦点为F1(-c,0), F2(c, 0),对应的左、右准线方程分别为离心率,由a2+b2=c2知e>1。两条渐近线方程为,双曲线与有相同的渐近线,它们的四个焦点在同一个圆上。若a=b,则称为等轴双曲线。9双曲线的常用结论,1)焦半径公式,对于双曲线,F1(-c,0), F2(c, 0)是它的两个焦点。设P(x,y)是双曲线上的任一点,若P在右支上,则|PF1|=ex+a, |PF2|=ex-a;若P(x,y)在左支上,则|PF1|=-ex-a,|PF2|=-ex+a.2) 过焦点的倾斜角为的弦长是。10抛物线:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫焦点,直线l叫做抛物线的准线。若取经过焦点F且垂直于准线l的直线为x轴,x轴与l相交于K,以线段KF的垂直平分线为y轴,建立直角坐标系,设|KF|=p,则焦点F坐标为,准线方程为,标准方程为y2=2px(p>0),离心率e=1.11抛物线常用结论:若P(x0, y0)为抛物线上任一点,1)焦半径|PF|=;2)过点P的切线方程为y0y=p(x+x0);3)过焦点倾斜角为的弦长为。12极坐标系,在平面内取一个定点为极点记为O,从O出发的射线为极轴记为Ox轴,这样就建立了极坐标系,对于平面内任意一点P,记|OP|=,xOP=,则由(,)唯一确定点P的位置,(,)称为极坐标。13圆锥曲线的统一定义:到定点的距离与到定直线的距离的比为常数e的点P,若0<e<1,则点P的轨迹为椭圆;若e>1,则点P的轨迹为双曲线的一支;若e=1,则点P的轨迹为抛物线。这三种圆锥曲线统一的极坐标方程为。二、方法与例题1与定义有关的问题。例1 已知定点A(2,1),F是椭圆的左焦点,点P为椭圆上的动点,当3|PA|+5|PF|取最小值时,求点P的坐标。解 见图11-1,由题设a=5, b=4, c=3,.椭圆左准线的方程为,又因为,所以点A在椭圆内部,又点F坐标为(-3,0),过P作PQ垂直于左准线,垂足为Q。由定义知,则|PF|=|PQ|。所以3|PA|+5|PF|=3(|PA|+|PF|)=3(|PA|+|PQ|)3|AM|(AM左准线于M)。所以当且仅当P为AM与椭圆的交点时,3|PA|+5|PF|取最小值,把y=1代入椭圆方程得,又x<0,所以点P坐标为例2 已知P,为双曲线C:右支上两点,延长线交右准线于K,PF1延长线交双曲线于Q,(F1为右焦点)。求证:F1K=KF1Q. 证明 记右准线为l,作PDl于D,于E,因为/PD,则,又由定义,所以,由三角形外角平分线定理知,F1K为PF1P的外角平分线,所以=KF1Q。2求轨迹问题。例3 (1984年高考理科)求经过定点M(1,2),以y轴为准线,离心率为的椭圆的左顶点的轨迹方程解:因为椭圆经过点M(1,2),且以y轴为准线,所以椭圆在y轴右侧,长轴平行于x轴设椭圆左顶点为A(x,y),因为椭圆的离心率为,所以左顶点A到左焦点F的距离为A到y轴的距离的,从而左焦点F的坐标为设d为点M到y轴的距离,则d=1根据及两点间距离公式,可得这就是所求的轨迹方程例4 长为a, b的线段AB,CD分别在x轴,y轴上滑动,且A,B,C,D四点共圆,求此动圆圆心P的轨迹。解 设P(x, y)为轨迹上任意一点,A,B,C,D的坐标分别为A(x-,0), B(x+,0), C(0, y-), D(0, y+), 记O为原点,由圆幂定理知|OA|OB|=|OC|OD|,用坐标表示为,即当a=b时,轨迹为两条直线y=x与y=-x;当a>b时,轨迹为焦点在x轴上的两条等轴双曲线;当a<b时,轨迹为焦点在y轴上的两条等轴双曲线。例5 在坐标平面内,AOB=,AB边在直线l: x=3上移动,求三角形AOB的外心的轨迹方程。解 设xOB=,并且B在A的上方,则点A,B坐标分别为B(3, 3tan),A(3,3tan(-),设外心为P(x,y),由中点公式知OB中点为M。由外心性质知 再由得×tan=-1。结合上式有tan= 又 tan+= 又 所以tan-=两边平方,再将,代入得。即为所求。3定值问题。例6 过双曲线(a>0, b>0)的右焦点F作B1B2轴,交双曲线于B1,B2两点,B2与左焦点F1连线交双曲线于B点,连结B1B交x轴于H点。求证:H的横坐标为定值。证明 设点B,H,F的坐标分别为(asec,btan), (x0, 0), (c, 0),则F1,B1,B2的坐标分别为(-c, 0), (c, ), (c, ),因为F1,H分别是直线B2F,BB1与x轴的交点,所以所以 由得代入上式得即 (定值)。注:本例也可借助梅涅劳斯定理证明,读者不妨一试。例7 设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,点C在准线上,且BC/x轴。证明:直线AC经过定点。证明 设,则,焦点为,所以,。由于,所以y2-y1=0,即=0。因为,所以。所以,即。所以,即直线AC经过原点。例8 椭圆上有两点A,B,满足OAOB,O为原点,求证:为定值。证明 设|OA|=r1,|OB|=r2,且xOA=,xOB=,则点A,B的坐标分别为A(r1cos, r1sin),B(-r2sin,r2cos)。由A,B在椭圆上有即 +得(定值)。4最值问题。例9 设A,B是椭圆x2+3y2=1上的两个动点,且OAOB(O为原点),求|AB|的最大值与最小值。解 由题设a=1,b=,记|OA|=r1,|OB|=r2,,参考例8可得=4。设m=|AB|2=,因为,且a2>b2,所以,所以br1a,同理br2a.所以。又函数f(x)=x+在上单调递减,在上单调递增,所以当t=1即|OA|=|OB|时,|AB|取最小值1;当或时,|AB|取最大值。例10 设一椭圆中心为原点,长轴在x轴上,离心率为,若圆C:1上点与这椭圆上点的最大距离为,试求这个椭圆的方程。解 设A,B分别为圆C和椭圆上动点。由题设圆心C坐标为,半径|CA|=1,因为|AB|BC|+|CA|=|BC|+1,所以当且仅当A,B,C共线,且|BC|取最大值时,|AB|取最大值,所以|BC|最大值为因为;所以可设椭圆半长轴、半焦距、半短轴长分别为2t,t,椭圆方程为,并设点B坐标为B(2tcos,tsin),则|BC|2=(2tcos)2+=3t2sin2-3tsin+4t2=-3(tsin+)2+3+4t2.若,则当sin=-1时,|BC|2取最大值t2+3t+,与题设不符。若t>,则当sin=时,|BC|2取最大值3+4t2,由3+4t2=7得t=1.所以椭圆方程为。例11在平面直角坐标系上,给定抛物线:,实数、满足,是方程的两根,记。 过点作的切线交轴于点。证明:对线段上的任一点,有; 设是定点,其中、满足,过作的两条切线,切点分别为,、与轴分别交于、,线段上异于两端点的点集记为。证明:; 设,当点取遍时,求的最小值(记为)和最大值(记为)。解: 证明:由已知知点在上,过点的的切线的斜率为直线的方程为:设点为线段上的任一点方程,即方程的两根为线段上的任一点 当时, 当时此时当时此时 当时, 当时此时当时此时综上所述,对线段上的任一点,有。 证明:由已知有直线的方程为:由已知有直线的方程为:解得 当时,由“”有: 当时,由“”有:综上所述, 当时,设过点的的切线的斜率为,其中为切点处的横坐标该切线方程为:为该切线上的点 当时,即 当时,又综上所述,又由“”有:5直线与二次曲线。例12 若抛物线y=ax2-1上存在关于直线x+y=0成轴对称的两点,试求a的取值范围。解 抛物线y=ax2-1的顶点为(0,-1),对称轴为y轴,存在关于直线x+y=0对称两点的条件是存在一对点P(x1,y1),(-y1,-x1),满足y1=a且-x1=a(-y1)2-1,相减得x1+y1=a(),因为P不在直线x+y=0上,所以x1+y10,所以1=a(x1-y1),即x1=y1+所以此方程有不等实根,所以,求得,即为所求。例13,已知抛物线的准线与轴交于点,过点作直线与抛物线交于两点,若的垂直平分线与轴交于,问能否是直角三角形?若能,求的值,若不能,请说明理由解:1)由题知,M(-1,0),因为直线AB的斜率存在,故可设AB方程为:,AB的中点,由所以,所以AB的垂直平分线方程为:令得如果三角形ABE为直角三角形,因EA=EB,所以角AEB为直角,且所以当时,三角形ABE为直角三角形.例14.设直线过点P(0,3),和椭圆顺次交于A、B两点,试求的取值范围.解1:当直线垂直于x轴时,可求得;当与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去得解之得 因为椭圆关于y轴对称,点P在y轴上,所以只需考虑的情形.当时,所以 =.由 , 解得 ,所以 ,综上 .解2:设直线的方程为:,代入椭圆方程,消去得则令,则,在(*)中,由判别式可得 ,从而有 ,所以 ,解得 .结合得. 综上,.例15已知双曲线,直线过点,斜率为,当时,双曲线的上支上有且仅有一点B到直线的距离为,试求的值及此时点B的坐标。解:设点为双曲线C上支上任一点,则点M到直线的距离为:于是,问题即可转化为如上关于的方程.由于,所以,从而有于是关于的方程 由可知: 方程的二根同正,故恒成立,于是等价于由如上关于的方程有唯一解,得其判别式,就可解得 .点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.例16已知椭圆C:和点P(4,1),过P作直线交椭圆于A、B两点,在线段AB上取点Q,使,求动点Q的轨迹所在曲线的方程.解:设,则由可得:,解之得: (1)设直线AB的方程为:,代入椭圆C的方程,消去得出关于 x的一元二次方程: (2)代入(1),化简得: (3)与联立,消去得:在(2)中,由,解得 ,结合(3)可求得 故知点Q的轨迹方程为: ().例17.(1991年高考)双曲线的中心在坐标原点O,焦点在x轴上,过双曲线右焦点且斜率为的直线交双曲线于P、Q两点若OPOQ,|PQ|=4,求双曲线的方程本小题考查双曲线性质,两点距离公式,两直线垂直条件,代数二次方程等基本知识,以及综合分析能力满分12分解法一:设双曲线的方程为=1依题意知,点P,Q的坐标满足方程组将式代入式,整理得(5b23a2)x2+6a2cx(3a2c2+5a2b2)=0 3分设方程的两个根为x1,x2,若5b23a2=0,则=,即直线与双曲线的两条渐近线中的一条平行,故与双曲线只能有一个交点同,与题设矛盾,所以5b23a20根据根与系数的关系,有 6分由于P、Q在直线y=(xc)上,可记为P (x1,(x1c),Q (x2,(x2c)由OPOQ得·=1,整理得3c(x1+x2)8x1x23c2=0 将,式及c2=a2+b2代入式,并整理得3a4+8a2b23b4=0,(a2+3b2)(3a2b2)=0因为a2+3b20,解得b2=3a2,所以 c=2a 8分由|PQ|=4,得(x2x1)2=(x2c)(x1c)2=42整理得(x1+x2)24x1x210=0将,式及b2=3a2,c=2a代入式,解得a2=1 10分将a2 =1代入b2=3a2得b2=3故所求双曲线方程为x2=1 12分解法二:式以上同解法一 4分解方程得x1=,x2= 6分由于P、Q在直线y=(xc)上,可记为P (x1,(x1c),Q (x2,(x2c)由OPOQ,得x1 x2(x1c)·(x2c)=0 将式及c2=a2b2代入式并整理得3a4+8a2b23b4=0,即 (a2+3b2)(3a2b2)=0因a2+3b20,解得b2=3a2 8分由|PQ|=4,得(x2x1)2+(x2c)(x1c)2=42即(x2x1)2=10将式代入式并整理得(5b23a2)216a2b4=0 10分将b2=3a2代入上式,得a2=1,将a2=1代入b2=3a2得b2=3故所求双曲线方程为x2=1 12分例18.已知双曲线:(,)的离心率为2,过点()斜率为1的直线交双曲线于、两点,且,(1)求双曲线方程;(2)设为双曲线右支上动点,为双曲线的右焦点,在轴负半轴上是否存在定点使得?若存在,求出点的坐标;若不存在,请说明理由(1)由双曲线离心率为2知,双曲线方程化为又直线方程为由,得设,则,因为 ,所以 ,结合,解得,代入,得,化简得又且所以此时,代入,整理得,显然该方程有两个不同的实根符合要求故双曲线的方程为 (2)假设点存在,设由(1)知,双曲线右焦点为设()为双曲线右支上一点当时,因为,所以 将代入,并整理得,于是 ,解得当时,而时,符合所以符合要求满足条件的点存在,其坐标为 例19. 如图,直角梯形ABCD中DAB90°,ADBC,AB2,AD,BC椭圆C以A、B为焦点且经过点D 建立适当坐标系,求椭圆C的方程; 若点E满足,问是否存在不平行AB的直线l与椭圆C交于M、N两点且,若存在,求出直线l与AB夹角的范围,若不存在,说明理由解:(1)如图,以AB所在直线为x轴,AB中垂线为y轴建立直角坐标系,A(1,0),B(1,0)设椭圆方程为:1令椭圆C的方程是:(2)ÞE(0, ),lAB时不符,设l:ykxm(k0)由, M、N存在设M(,),N(,),MN的中点F(,)且, l与AB的夹角的范围是,三、基础训练题1A为半径是R的定圆O上一定点,B为O上任一点,点P是A关于B的对称点,则点P的轨迹是_.2一动点到两相交直线的距离的平方和为定值m2(>0),则动点的轨迹是_.3椭圆上有一点P,它到左准线的距离是10,它到右焦点的距离是_.4双曲线方程,则k的取值范围是_.5椭圆,焦点为F1,F2,椭圆上的点P满足F1PF2=600,则F1PF2的面积是_.6直线l被双曲线所截的线段MN恰被点A(3,-1)平分,则l的方程为_.7ABC的三个顶点都在抛物线y2=32x上,点A(2,8),且ABC的重心与这条抛物线的焦点重合,则直线BC的斜率为_.8已知双曲线的两条渐近线方程为3x-4y-2=0和3x+4y-10=0,一条准线方程为5y+4=0,则双曲线方程为_.9已知曲线y2=ax,与其关于点(1,1)对称的曲线有两个不同的交点,如果过这两个交点的直线的倾斜角为450,那么a=_.10.P为等轴双曲线x2-y2=a2上一点,的取值范围是_.11已知椭圆与双曲线有公共的焦点F1,F2,设P是它们的一个焦点,求F1PF2和PF1F2的面积。12已知(i)半圆的直径AB长为2r;(ii)半圆外的直线l与BA的延长线垂直,垂足为T,设|AT|=2a(2a<);(iii)半圆上有相异两点M,N,它们与直线l的距离|MP|,|NQ|满足求证:|AM|+|AN|=|AB|。四、高考水平测试题1双曲线与椭圆x2+4y2=64共焦点,它的一条渐近线方程是=0,则此双曲线的标准方程是_.2过抛物线焦点F的直线与抛物线相交于A,B两点,若A,B在抛物线准线上的射影分别是A1,B1,则A1FB1=_.3双曲线的一个焦点为F1,顶点为A1,A2,P是双曲线上任一点,以|PF1|为直径的圆与以|A1A2|为直径的圆的位置关系为_.4椭圆的中心在原点,离心率,一条准线方程为x=11,椭圆上有一点M横坐标为-1,M到此准线异侧的焦点F1的距离为_.54a2+b2=1是直线y=2x+1与椭圆恰有一个公共点的_条件.6若参数方程(t为参数)表示的抛物线焦点总在一条定直线上,这条直线的方程是_.7如果直线y=kx+1与焦点在x轴上的椭圆总有公共点,则m的范围是_.8过双曲线的左焦点,且被双曲线截得线段长为6的直线有_条.9过坐标原点的直线l与椭圆相交于A,B两点,若以AB为直径的圆恰好通过椭圆的右焦点F,则直线l的倾斜角为_.10以椭圆x2+a2y2=a2(a>1)的一个顶点C(0,1)为直角顶点作此椭圆的内接等腰直角三角形ABC,这样的三角形最多可作_个.11求椭圆上任一点的两条焦半径夹角的正弦的最大值。12设F,O分别为椭圆的左焦点和中心,对于过点F的椭圆的任意弦AB,点O都在以AB为直径的圆内,求椭圆离心率e的取值范围。13已知双曲线C1:(a>0),抛物线C2的顶点在原点O,C2的焦点是C1的左焦点F1。(1)求证:C1,C2总有两个不同的交点。(2)问:是否存在过C2的焦点F1的弦AB,使AOB的面积有最大值或最小值?若存在,求直线AB的方程与SAOB的最值,若不存在,说明理由。五、联赛一试水平训练题1在平面直角坐标系中,若方程m(x2+y2+2y+1)=(x-2y+3)2表示的曲线为椭圆,则m的取值范围是_.2设O为抛物线的顶点,F为焦点,且PQ为过F的弦,已知|OF|=a,|PQ|=b,OPQ面积为_.3给定椭圆,如果存在过左焦点F的直线交椭圆于P,Q两点,且OPOQ,则离心率e的取值范围是_.4设F1,F2分别是双曲线(a>b>0)的左、右焦点,P为双曲线上的动点,过F1作F1PF2平分线的垂线,垂足为M,则M的轨迹为_.5ABC一边的两顶点坐标为B(0,)和C(0,),另两边斜率的乘积为,若点T坐标为(t,0)(tR+),则|AT|的最小值为_.6长为l(l<1)的线段AB的两端点在抛物线y=x2上滑动,则线段AB的中点M到x轴的最短距离等于_.7已知抛物线y2=2px及定点A(a,b),B(-a,0),ab0,b22pa,M是抛物线上的点,设直线AM,BM与抛物线的另一个交点分别为M1,M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为_.8已知点P(1,2)既在椭圆内部(含边界),又在圆x2+y2=外部(含边界),若a,bR+,则a+b的最小值为_.9已知椭圆的内接ABC的边AB,AC分别过左、右焦点F1,F2,椭圆的左、右顶点分别为D,E,直线DB与直线CE交于点P,当点A在椭圆上变动时,试求点P的轨迹。10设曲线C1:(a为正常数)与C2:y2=2(x+m)在x轴上方有一个公共点P。(1)求实数m的取值范围(用a表示);(2)O为原点,若C1与x轴的负半轴交于点A,当0<a<时,试求OAP面积的最大值(用a表示)。11已知直线l过原点,抛物线C的顶点在原点,焦点在x轴正半轴上,若点A(-1,0)和B(0,8)关于l的对称点都在C上,求直线l和抛物线的方程。六、联赛二试水平训练题1在四边形ABCD中,对角线AC平分BAD,在CD上取一点E,BE与AC相交于F,延长DF交BC于G,求证:GAC=EAC。2求证:在坐标平面上不存在一条具有奇数个顶点,每段长都为1的闭折线,它的每个顶点坐标都是有理数。3以B0和B1为焦点的椭圆与AB0B1的边ABi交于Ci(i=0,1),在AB0的延长线上任取点P0,以B0为圆心,B0P0为半径作圆弧交C1B0的延长线于Q0;以C1为圆心,C1Q0为半径作圆弧Q0P1交B1A的延长线于P1;B1为圆心,B1P1为半径作圆弧P1Q1交B1C0的延长线于Q1;以C0为圆心,C0Q1为半径作圆弧Q1,交AB0的延长线于。求证:(1)点与点P0重合,且圆弧P0Q0与P0Q1相内切于P0;(2)P0,Q0,P1,Q1共圆。4在坐标平面内,从原点出发以同一初速度v0和不同发射角(即发射方向与x轴正向之间 的夹角)(0,)射出的质点,在重力的作用下运动轨迹是抛物线,所有这些抛物线组成一个抛物线族,若两条抛物线在同一个交点处的切线互相垂直,则称这个交点为正交点。证明:此抛物线族的所有正交点的集合是一段椭圆弧,并求此椭圆弧的方程(确定变量取值范围)。5直角ABC斜边为AB,内切圆切BC,CA,AB分别于D,E,F点,AD交内切圆于P点。若CPBP,求证:PD=AE+AP。6已知BCCD,点A为BD中点,点Q在BC上,AC=CQ,又在BQ上找一点R,使BR=2RQ,CQ上找一点S,使QS=RQ,求证:ASB=2DRC。答案:基础训练题1圆。设AO交圆于另一点是A关于的对称点。则因为AB,所以P在以为直径的圆上。2圆或椭圆。设给定直线为y=±kx(k>0),P(x,y)为轨迹上任一点,则。化简为2k2x2+2y2=m2(1+k2).当k1时,表示椭圆;当k=1时,表示圆。312由题设a=10,b=6,c=8,从而P到左焦点距离为10e=10×=8,所以P到右焦点的距离为20-8=12。4-2<k<2或k<5.由(|k|-2)(5-k)<0解得k>5或-2<k<2.5.设两条焦半径分别为m,n,则因为|F1F2|=12,m+n=20.由余弦定理得122=m2+n2-2mncos600,即(m+n) 2-3mn=144.所以,63x+4y-5=0.设M(x1,y1),N(x2,y2),则两式相减得-(y1+y2)(y1-y2)=0.由,得。故方程y+1=(x-3).7.-4.设B(x1,y1),C(x2,y2),则=0,所以y1+y2=-8,故直线BC的斜率为8=1。由渐近线交点为双曲线中心,解方程组得中心为(2,1),又准线为,知其实轴平行于y轴,设其方程为=1。其渐近线方程为=0。所以y-1=(x-1).由题设,将双曲线沿向量m=(-2,-1)平移后中心在原点,其标准方程为=1。由平移公式平移后准线为,再结合,解得a2=9,b2=16,故双曲线为=1。92曲线y2=ax关于点(1,1)的对称曲线为(2-y)2=a(2-x),由得y2-2y+2-a=0,故y1+y2=2,从而=1,所以a=2.10(2,。设P(x1,y1)及,由|PF1|=ex1+a,|PF2|=ex1-a,|PF1|+|PF2|=2ex1, 所以,即。因,所以,所以即2<t2.11.解:由对称性,不妨设点P在第一象限,由题设|F1F2|2=4=4c2,又根据椭圆与双曲线定义解得|PF1|=a1+a2,|PF2|=a1-a2.在F1PF2中,由余弦定理从而又sinF1PF2=所以12解:以直线AB为x轴,AT的中垂线为y轴建立直角坐标系,则由定义知M,N两点既在抛物线y2=4ax上,又在圆x-(a+r)2+y2=r2上,两方程联立得x2+(2a-2r)x+2ra+a2=0,设点M,N坐标分别为(x1,y1),(x2,y2),则x1+x2=2r-2a.又|AM|=|MP|=x1+a,|AN|=|NP|=x2+a. |AB|=2r,所以|AM|+|AN|=x1+x2+2a=2r=|AB|.得证。高考水平测试题1由椭圆方程得焦点为,设双曲线方程,渐近线为由题设,所以a2=3b2,又,c2=a2+b2. 所以b2=12, a2=36.2. 900。见图1,由定义得|FA|=|AA1|,|FB|=|BB1|,有1=BFB1,2=AFA1,又1=3,2=4,所以3+4=BFB1+AFA1=900。3相切,若P(x,y)在左支上,设F1为左焦点,F2为右焦点,M为PF1中点,则|MO|=|PF2|=(a-ex),又|PF1|=-a-ex,所以两圆半径之和(-a-ex)+a=(a-ex)=|MO|,所以两圆外切。当P(x,y)在右支上时,同理得两圆内切。4与F1对应的另一条准线为x=-11,因|MF1|与M到直线x=-11距离d1之比为e,且d1=|xm+11|=10.所以,所以|MF1|=5充要。将y=2x+1代入椭圆方程得(b2+4a2)x2+4a2x+a2 (1-b2)=0. 若=(4a2) 2-4(b2+4a2)a2 (1-b2)=0,则直线与椭圆仅有一个公共点,即b2+4a2=1;反之,4a2+b2=1,直线与椭圆有一个公共点。6y=2(x-1)。消去参数得(y-2m) 2=4(x-m),焦点为它在直线y=2(x-1)上。71m<5。直线过定点(0,1),所以01.又因为焦点在x轴上,所以5>m,所以1m<5。83双曲线实轴长为6,通径为4,故线段端点在异支上一条,在同支上有二条,一共有三条。9或。设直线l: y=kx与椭圆交于A(x1,y1),B(x2,y2),把y=kx代入椭圆方程得(1+3k2)x2-6x+3=0,由韦达定理得因F(1,0),AFBF,所以(x1-1)(x2-1)+y1y2=0,即x1x2-(x1+x2)+1+k2x1x2=0. 把,代入得,所以倾斜角为或103首先这样的三角形一定存在,不妨设A,B分别位于y轴左、右两侧,设CA斜率为k(k>0),CA的直线方程为y=kx+1,代入椭圆方程为(a2k2+1)x2+2a2kx=0,得x=0或,于是,|CA|=由题设,同理可得|CB|=,利用|CA|=|CB|可得(k-1)k2-(a2-1)k+1=0,解得 k=1或k2-(a2-1)k+1=0。对于,当1<a<时,无解;当时,k=1;当a>时,有两个不等实根,故最多有3个。11解 设焦点为F1,F2,椭圆上任一点为P(x0,y0),F1PF2=,根据余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1|PF2|cos,又|PF1|+|PF2|=2a,则4c2=(2a)2-2|PF1|PF2|(1+cos),再将|PF1|=a+ex0,|PF2|=a-ex0及a2=b2+c2代入得4b2=2(a2-e2)(1+cos).于是有由0,得,所以。因0,所以cos为减函数,故0当2b2>a2即时,arccos,sin为增函数,sin取最大值;当2b2a2时,arccos,0,,则sin最大值为1。12解 设A(x1,y1),B(x2,y2),若AB斜率不为0,设为k,直线AB方程为y=k(x+c),代入椭圆方程并化简得(b2+a2k2)x2+2a2k2cx+a2 (k2c2-b2)=0. 则x1,x2为方程的两根,由韦达定理得因为y1y2=k2(x1+c)(x2+c),再由,得所以=x1x2+y1y2=,O点在以AB为直径的圆内,等价<0,即k2(a2c2-b4)-a2b2<0对任意kR成立,等价于a2c2-b20,即ac-b20,即e2+e-10.所以0<e若斜率不存在,问题等价于即,综上13解 (1)由双曲线方程得,所以F1(,0),抛物线焦点到准线的距离,抛物线把代入C1方程得=64a2>0,所以方程必有两个不同实根,设为x1,x2,由韦达定理得x1x2=-a2<0,所以必有一个负根设为x1,把x1代入得y2=,所以(因为x10),所以C1,C2总有两个不同交点。(2)设过F1(,0)的直线AB为my=(x+a),由得y2+4may-12a2=0,因为=48m2a2+48a2>0,设y1,y2分别为A,B的纵坐标,则y1+y2=,y1y2=-12a2.所以(y1-y2)2=48a2(m2+1).所以SAOB=|y1-y2|OF1|=aa,当且仅当m=0时,SAOB的面积取最小值;当m+时,SAOB+,无最大值。所以存在过F的直线x=使AOB面积有最小值6a2.联赛一试水平训练题1m>5.由已知得,说明(x,y)到定点(0,-1)与到定直线x-2y+3=0的距离比为常数,由椭圆定义<1,所以m>5.2.因为b=|PQ|=|PF|+|QF|=,所以。所以SOPQ=absin=.3.。设点P坐标为(r1cos,r1sin),点Q坐标为(-r2sin,r2cos),因为P,Q在椭圆上,可得,RtOPQ斜边上的高为|OF|=c. 所以a2b2c2(a2+b2),解得e<1.4.以O为圆心,a为半径的圆。延长F1M交PF2延长线于N,则F2N,而|F2N|=|PN|-|PF2|=|PF1|-|PF2|=2a,所以|OM|=a.5.t(0,1时|AT|min=,t>1时|AT|min=|t-2|.由题设kABkAC=-,设A(x,y),则(x0),整理得=1(x0),所以|AT|2=(x-t)2+y2=(x-t)2+(x-2t)2+2-t2.因为|x|2,所以当t(0,1时取x=2t,|AT|取最小值。当t>1时,取x=2,|AT|取最小值|t-2|.6.设点M(x0,y0) ,直线AB倾斜角为,并设A(x0-), B(x0+),因为A,B在抛物线上,所以由,得 2x0cos=sin. 所以因为l2<1,所以函数f(x)=.在(0,1在递减,所以。当cos=1即l平行于x轴时,距离取最小值7设,由A,M,M1共线得y1=,同理B,M,M2共线得,设(x,y)是直线M1M2上的点,则y1y2=y(y1+y2)-2px,将以上三式中消去y1,y2得y02(2px-by)+y02pb(a-x)+2pa(by-2pa)=0.当x=a,y=时上式恒成立,即定点为8。由题设且a2+2b215,解得5b26.所以a+b(t=b2-41,2),而,又t2可得上式成立。9解 设A(2cos,), B(2cos,sin),C(2cos,sin),这里,则过A,B的直线为lAB:,由于直线AB过点F1(-1,0),代入有