A全等三角形之手拉手模型、倍长中线-截长补短法35553(8页).doc
-A全等三角形之手拉手模型、倍长中线-截长补短法35553-第 7 页手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点 结论:(1)ABD AEC (2)+BOC=180° (3)OA平分BOC变形:例1.如图在直线的同一侧作两个等边三角形与,连结与,证明(1)(2) 与之间的夹角为(3) 平分变式精练1:如图两个等边三角形与,连结与,证明(1)(2) 与之间的夹角为(3) 与的交点设为,平分变式精练2:如图两个等边三角形与,连结与,证明(1)(2) 与之间的夹角为(3) 与的交点设为,平分例2:如图,两个正方形与,连结,二者相交于点问:(1)是否成立?(2) 是否与相等?(3) 与之间的夹角为多少度?(4) 是否平分?例3:如图两个等腰直角三角形与,连结,二者相交于点问:(1)是否成立?(2)是否与相等?(3)与之间的夹角为多少度?(4)是否平分?例4:两个等腰三角形与,其中,连结与,问:(1)是否成立?(2)是否与相等?(3)与之间的夹角为多少度?(4)是否平分?例5:如图,点A. B. C在同一条直线上,分别以AB、BC为边在直线AC的同侧作等边三角形ABD、BCE.连接AE、DC,AE与DC所在直线相交于F,连接FB.判断线段FB、FE与FC之间的数量关系,并证明你的结论。【练1】如图,三角形ABC和三角形CDE都是等边三角形,点A,E,D,同在一条直线上,且角EBD=62°,求角AEB的度数 倍长与中点有关的线段倍长中线类考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的:将题中已知和未知条件集中在一对三角形中、构造全等三角形、平移线段。【方法精讲】常用辅助线添加方法倍长中线ABC中 方式1: 延长AD到E, AD是BC边中线 使DE=AD, 连接BE 方式2:间接倍长 作CFAD于F, 延长MD到N, 作BEAD的延长线于E 使DN=MD,连接BE 连接CD【例1】 已知:中,是中线求证:【练1】在中,则边上的中线的长的取值范围是什么?【练2】如图所示,在的边上取两点、,使,连接、,求证:【练3】如图,在等腰三角形ABC中,AB=AC,D是AB上一点,F是AC延长线上的一点,且BD=CF,连结DF交BC于E求证:DE=EF(倍长中线、截长补短)【例2】 如图,已知在中,是边上的中线,是上一点,延长交于,求证:【练1】如图,已知在中,是边上的中线,是上一点,且,延长交于,求证:【练2】如图,在ABC中,AB>AC,E为BC边的中点,AD为BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G. 求证:BF=CG.【练3】如图,在中,交于点,点是中点,交的延长线于点,交于点,若,求证:为的角平分线【练4】如图所示,已知中,平分,、分别在、上,求证:【例3】已知为的中线,的平分线分别交于、交于求证:【练1】在中,是斜边的中点,、分别在边、上,满足若,则线段的长度为_【练2】如图,ABC中,AB=2AC,AD平分BC且ADAC,则BAC=_.【练3】在中,点为的中点,点、分别为、上的点,且(1)若,以线段、为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?(2)如果,求证【例4】如图,等腰直角与等腰直角,为中点,连接、.探究、的关系.(证角相等方法)【练1】如图,两个正方形和,点为的中点,连接交于点.探究与的数量关系和位置关系.(证角相等方法)【练2】如图,在中,是边的中线.求证:【例5】如图所示,在中,延长到,使,为的中点,连接、,求证【练1】已知中,为的延长线,且,为的边上的中线求证:【练2】如图,CB、CD分别是钝角AEC和锐角ABC中线,且AC=AB,ACB=ABC.求证CE=2CD.【例16】如图,两个正方形和,点为的中点,连接交于点.探究与的数量关系和位置关系.(倍长中线与手拉手模型综合应用)【练1】已知:如图,正方形和正方形,点是线段的中点. 试说明线段与数量关系和关系. 如图,若将上题中正方形绕点顺时针旋转度数(),其他条件不变,上述结论还正确吗?若正确,请你证明;若不正确,请说明理由.全等之截长补短:“截长补短法”又是解决这一类问题的一种特殊方法(把长边截成两个短边或把两个短边放到一起;出现角平分线进行翻折;有具体角的度数说明要求角的度数,进而得到角相等,全等)【例10】 如图所示,中,AD平分交BC于D。求证:AB=AC+CD。【练1】如图所示,在中,的角平分线AD、CE相交于点O。求证:AE+CD=AC。【练2】已知中,、分别平分和,、交于点,试判断、的数量关系,并加以证明【练2】如图,在四边形ABCD中,ADBC,AE平分BAD交DC于点E,连接BE,且AEBE,求证:AB=AD+BC.【练3】已知:如图,在ABC中,A=90,AB=AC,BD是ABC的平分线。求证:BC=AB+AD.【练4】点M,N在等边三角形ABC的AB边上运动,BD=DC,BDC=120°,MDN=60°,求证MN=MB+NC【例11】已知如图所示,在ABC中,AD是角平分线,且AC=AB+BD,试说明B=2C(不只是边,倍角也适用)【练1】如图,在ABC中,ABAC,BDAC交AC于点D求证:DBCBAC【例12】如图所示,已知,P为BN上一点,且于D,AB+BC=2BD,求证:。【练1】如图,在四边形ABCD中,BCBA, ADCD,BD平分, 求证: 【例13】如图所示,在中,AB=AC,CE垂直于BD的延长线于E。求证:BD=2CE。【练1】已知:如图示,在RtABC中,A=90°,ABC=2C,BD是ABC的平分线求证:CD=2AD【练2】如图所示,在中,AD为的平分线,=30,于E点,求证:AC-AB=2BE。【练3】正方形ABCD,E是BC上一点,AEEF,交DCH的平分线于点F,求证AE=EF【练4】已知在ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE【例14】如图所示,已知/CD,的平分线恰好交于AD上一点E,求证:BC=AB+CD。【练1】如图,已知ADBC,PAB的平分线与CBA的平分线相交于E,CE的连线交AP于D求证:AD+BC=AB【练2】如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分DAE,求证:AE=EC+CD【练3】在ABC中,AD是BC边上的高,B=2C求证:CD=AB+BD【练4】如图所示,在三角形ABC中,ACB=90°,AC=BC,D为三角形ABC外一点,且ADBD,DEAC交AC的延长线于点E.试探求ED、AE和BC之间有何数量关系【练5】在四边形ABCD中,ABDC,E为BC边的中点,BAE=EAF,AF与DC的延长线相交于点F。试探究线段AB与AF、CF之间的数量关系,并证明你的结论【例15】如图在ABC中,ABAC,12,P为AD上任意一点,求证:AB-ACPB-PCD A 12 P B C【练1】已知为的中线,的平分线分别交于、交于 求证:如图,E是的平分线上一点,垂足为C、D。求证:(1)OC=OD; (2)DF=CF。 构造等边三角形1、如图,已知ABC中,AB=AC,D是CB延长线上一点,ADB=60,E是AD上一点,且有DE=DB.求证:AE=BE+BC.2、在等腰中,顶角,在边上取点,使,求.练习1、如图,在ABC中,ACB=90°,BE平分ABC,DEAB于D,如果AC=3cm,那么AE+DE等于A、2cmB、3cmC、4cmD、5cmABCDA'B'C'D'练习2、在ABC和A'B'C'中,AB=A'B',AC=A'C',点D,D'分别是BC,B'C'的中点,且AD=A'D',证眀:.(倍长中线)练习3、如图,在ABC中,BE是ABC的角平分线,ADBE,垂足为D,求证:2=1+C练习4、如图(1),已知ABC中,BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BDAE于D,CEAE于E(1)试说明:BD=DE+CE(2)若直线AE绕A点旋转到图(2)位置时(BDCE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果;(3)若直线AE绕A点旋转到图(3)位置时(BDCE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不需说明理由如图所示,在RtABC中,ABAC,BAC90°,有过A的任一条直线AN,BDAN于D,CEAN于E,求证:DEBDCE(思路:截长补短法)如图,在ABC中,AB=AC,D是三角形外一点,且ABD=60,BD+DC=AB.求证:ACD=60.(截长补短)1、如图,等腰直角与等腰直角,为中点,连接、.探究、的关系.(辅助线的连法都一样)2、已知:如图,正方形和正方形,点是线段的中点. 试说明线段与数量关系和关系.(辅助线的连法都一样) 如图,若将上题中正方形绕点顺时针旋转度数(),其他条件不变,上述结论还正确吗?若正确,请你证明;若不正确,请说明理由.3、已知为的中线,的平分线分别交于、交于 求证:(辅助线的连法都一样)【阅读理解】已知:如图1,等腰直角三角形ABC中,B=90°,AD是角平分线,交BC边于点D求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:RtADBRtADE(AAS)AED=B=90°,DE=DB又C=45°,DEC是等腰直角三角形DE=ECAC=AE+EC=AB+BD【解决问题】已知,如图2,等腰直角三角形ABC中,B=90°,AD是BAC的平分线,交BC边于点D,DEAC,垂足为E,若AB=2,则三角形DEC的周长为 【数学思考】:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D如图3”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想【类比猜想】任意三角形ABC,ABC=2C,AD是BAC的外角平分线,交CB边的延长线于点D,如图4,请你写出线段AC、AB、BD之间的数量关系如图,已知B=C=90°,M是BC的中点,DM平分ADC.(1)求证:AM平分DAB(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果。