华师大版八年级数学下册知识要点.docx
八年级下数学各章学问要点第17章 分式复习要点1、形如AB(A、B都是整式,且B中含有字母,B0)的式子叫做分式。整式和分式统称有理式。2、分母0时,分式有意义。分母0时,分式无意义。3、分式的值为0,要同时满意两个条件:分子0,而分母0。4、分式根本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。5、分式、分子、分母的符号,随意变更其中两个的符号,分式的值不变。6、分式四则运算1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算2)分式乘除时先把分子分母都因式分解,然后再约去一样的因式。3)分式的混合运算,留意运算依次和符号的变更,4)分式运算的最终结果应化为最简分式或整式7、分式方程1)分式化简及解分式方程不能混淆分式化简是恒等变形,不能随意去分母2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。第18章 函数和图象的复习要点1、规定了原点、正方向和单位长度的直线叫数轴。数轴上的点及实数一一对应。数轴上的点A、B的坐标为x1、x2, 则AB1 。2、具有公共原点且相互垂直的两条数轴就构成平面直角坐标系。坐标平面内的点及有序实数对一一对应。3、坐标轴上的点不属于任何象限。x轴上的点纵坐标y0;y轴上的点横坐标x0。第一象限内的点x>0,y>0;第二象限内的点x<0,y>0;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;由此可知,x轴上方的点,纵坐标y0;x轴下方的点,纵坐标y0;y轴左边的点,横坐标x0;y轴右边的点,横坐标x0.4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。关于原点对称的点,纵、横坐标都互为相反数。关于第一、三象限角平分线对称的点,横纵坐标交换位置;关于第二、四象限角平分线上对称的点,不但横纵坐标交换位置,而且还要变成相反数。5、第一、三象限角平分线上的点,横纵坐标相等;第二、四象限角平分线上的点,横纵坐标互为相反数。6、在一个变更过程中,存在两个变量x、y,对于x的每一个取值,y都有唯一的一个值及之对应,我们就说y是x的函数。x是自变量,y是因变量。 函数的表示方法有:解析式法、图象法、列表法。7、函数自变量的取值范围:函数的解析式是整式时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母0;函数的解析式是二次根式时,自变量的取值应使被开方数0函数的解析式是负整指数和零指数时,底数0;对于反映实际问题的函数关系,应使实际问题有意义 8、假如ykx b ( k、b是常数,k0),那么,y叫x的一次函数。假如ykx (k是常数,k 0),那么,y叫x的正比例函数。9、点在函数的图象上的代数意义是:这一点的坐标满意函数的解析式。两个函数有交点的代数意义是:两个函数的解析式组成的方程组的解就是交点的坐标。10、一次函数ykxb的性质: (1)一次函数图象是过 两点的一条直线,|k|的值越大,图象越靠近于y轴。(2)当k>0时,图象过一、三象限,y随x的增大而增大;从左至右图象是上升的(左低右高);(3)当k<0时,图象过二、四象限,y随x的增大而减小。从左至右图象是下降的(左高右低);(4)当b>0时,及y轴的交点(0,b)在正半轴;当b<0时,及y轴的交点(0,b)在负半轴。当b0时,一次函数就是正比例函数,图象是过原点的一条直线(5)几条直线相互平行时 ,k值相等而b不相等。11、假如ykx ( k是常数,k0),那么,y叫x的反比例函数。12、反比例函数ykx的性质:(1)反比例函数的图象是双曲线,图象无限的靠近于x、y轴。(2)当k>0时,图象的两个分支位于一、三象限,在每个象限内,y随x的增大而减小,从左至右图象是下降的(左低右高);(3)当k<0时,图象的两个分支位于二、四象限,在每个象限内,y随x的增大而增大,从左至右图象是上升的(左高右低)。(4)反比例函数ykx及正比例函数yk x的交点关于原点对称。第19章 全等三角形1、推断正确或错误的句子叫做命题正确的命题称为真命题,错误的命题称为假命题2、命题是由题设、结论两局部组成的题设是已知事项;结论是由已知事项推出的事项常可写成“假如,那么”的形式用“假如”开场的局部就是题设,而用“那么”开场的局部就是结论3、直角三角形的两个锐角互余4、三角形全等的断定: 方法1:假如两个三角形有两边和其夹角分别对应相等,那么这两个三角形全等简记为S.A.S.(或边角边)方法2:假如两个三角形有两个角和其夹边分别对应相等,那么这两个三角形全等简记为A.S.A.(或角边角)方法3:假如两个三角形有两个角和其中一个角的对边分别对应相等,那么这两个三角形全等简记为A.A.S.(或角角边)方法4:假如两个三角形的三条边分别对应相等,那么这两个三角形全等简记为S.S.S(或边边边).方法5(只能用于直角三角形):假如两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等简记为H.L.(或斜边、直角边)5、一般来说,在两个命题中,假如第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题假如把其中一个命题叫做原命题,那么另一命题就叫做它的逆命题6、假如一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理7、假如一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)8、假如三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.(勾股定理的逆定理)9、角平分线上的点到这个角的两边的间隔 相等到一个角两边的间隔 相等的点在这个角的平分线上.10、线段的垂直平分线上的点到这条线段的两个端点的间隔 相等;到一条线段的两个端点的间隔 相等的点在这条线段的垂直平分线上。第20章 平行四边形的断定1、四边形的内角和定理:四边形内角和等于360°;2、多边形内角和定理:n边形的内角和等于(n2)×180°;3、多边形的外角和定理:随意多边形的外角和等于360°;4、n边形对角线条数公式:n(n3)2(n3);5、中心对称:把一个图形绕某一个点旋转180°,假如它可以及另一个图形重合,那么就说这两个图形关于这个点对称。6、中心对称图形:把一个图形绕某一个点旋转180°,假如它可以和原来的图形相互重合,那么就说这个图形叫做中心对称图形。7、中心对称的性质:关于中心对称的两个图形是全等形;关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分。8、平行四边形的性质和断定性质类别性质边 角对角线对称性平行四边形对边平行对边相等对角相等邻角互补对角线相互平分中心对称矩形对边平行对边相等四个角都是直角对角线相互平分对角线相等中心对称,轴对称菱形对边平行四边相等对角相等邻角互补对角线相互垂直平分对角线平分每一组对角中心对称,轴对称正方形对边平行四边相等四个角都是直角对角线相互垂直平分对角线平分每一组对角对角线相等中心对称,轴对称等腰梯形两底平行两腰相等同一底上的两个角相等对角线相等轴对称断定类别断定平行四边形 两组对边分别分别平行的四边形是平行四边形 两组对边分别分别相等的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形 两组对角分别相等的四边形是平行四边形 对角线相互平分的四边形是平行四边形矩形 有一个角是直角的平行四边形是矩形 有三个角是直角的四边形 对角线相等的平行四边形是矩形菱形 有一组邻边相等的平行四边形是菱形 四条边都相等的四边形是菱形 对角线相互垂直的平行四边形是菱形 对角线平分每一组对角的四边形是菱形正方形 一组邻边相等的矩形是正方形 有一个角是直角的菱形是正方形 对角线相互垂直且相等的平行四边形是正方形等腰梯形 两腰相等的梯形是等腰梯形 同一底上的两个角相等的梯形是等腰梯形 对角线相等的梯形是等腰梯形第21章 数据的整理及初步处理1、平均数总量÷总份数。数据的平均数只有一个。一般说来,n个数 、 、 的平均数为 1n(x1+x2+xn) 一般说来,假如n个数据中,x1出现f1次,x2出现f2次,xk出现fk次,且f1f2 fkn则这n个数的平均数可表示为xx1f1+x2f2+xkfkn。其中fin是xi的权重(i1,2k)。加权平均数是分析数据的又一工具。当考虑不同权重时,决策者的结论就有可能随之变更。2、将一组数据按由小到大(或由大到小)的依次排列(即使有相等的数据也要全部参与排列),假如数据的个数是奇数,那么中位数就是中间的那个数据。假如数据的个数是偶数,那么中位数就是中间的两个数据的平均数。一组数据的中位数只有一个,它可能是这组数据中的一个数据,也可能不是这组数据中的数据3、一组数据中出现的次数最多的数据就是众数。一组数据可以有不止一个众数,也可以没有众数(当某一组数据中全部数据出现的次数都一样时,这组数据就没有众数)-_24、一组数据中的最大值减去最小值就是极差:极差最大值最小值-2_-2_225、我们通常用S表示一组数据的方差,用X表示一组数据的平均数,X1、X2 、 表示各个原始数据则S=1/5(X1-X) +(X1-X)( 平方单位)求方差的方法:先求平均数,再求偏向,然后求偏向的平方和,最终再平均数6、求出的方差再开平方,这就是标准差。 7、平均数、极差、方差、标准差的变更规律一组数据同时加上或减去一个数,极差不变,平均数加上或减去这个数,方差不变,标准差不变 一组数据同时乘以或除以一个数,极差和平均数都乘以或除以这个数,方差乘以或除以该数的平方,标准差乘以或除以这个数。一组数据同时乘以一个数a,然后在加上一个数b,极差乘以或除以这个数a,平均数乘以或除以这个数a,再加上b,方差乘以a的平方,标准差乘以|a|. (加减的数都不为0)