最新七年级下数学优质公开课获奖教案设计模板.docx
最新七年级下数学优质公开课获奖教案设计模板 最新七年级下数学教案模板1 一 说教材: (一) 地位、作用: 本节课是在学习了正负数、相反数、有理数的加法运算之后,以初中代数第一册p80页的有理数的减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用 (二) 教学目标: 1、 知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。 2、 能力目标:培养学生探究思维能力和分析解决问题的能力 3、 情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。 (三) 重点、难点: 重点:有理数的减法法则,熟练地进行有理数的减法运算 难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算 二、说教学方法: 根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。 附教学工具:温度计、投影仪、多媒体 三、说学法: 根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。 四、说教学程序: (一) 引入课题环节: 1、 复习有理数的加法法则,为新课的讲授作好铺垫。 2、 (提问)用算式表示:与-3的和等于-10的数。 (根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。 (二)新课讲解环节: 1、 通过投影仪给出以下算式: 减法 加法 (+10)-(+3)=+7 (+10)+(-3)=+7 让学生比较上面这两个算式并讨论后得出: (+10)-(+3)=(+10)+(-3) 再给出以下算式: 减法 加法 (+5)-(+2)=+3 (+5)+(-2)=+3 继续让学生比较上面这两个算式并讨论后得出: (+5)-(+2)=(+5)+(-2) 从而,它启发我们有理数的减法可以转化成加法进行 2、讲解课本p80的内容,回答复习题2提出的问题即如何求(-10)-(-3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。 文字叙述:减去一个数,等于加上这个数的相反数 字母表示:a-b=a+(-b) (说明:简明的表示方法,体现字母表示数的优越性, 实际运算时会更加方便) 强调运用法则时:被减数不变,减号变加号,减数变成其相反数 减数变号 (减法=加法) 3、出示温度计,用多媒体出现(如p81的图2-20),并进行动画演示,通过求15 比5 高多少?15 比-5 高多少?的实例来说明减法法则的合理性以及有理数减法的实际意义。同时进行练习反馈:课本p82的练习1,4、通过例题教学使学生巩固方法,初步具备解决问题的能力。 例1.计算 :(1) (-3)-(-5); (2) 0 - 7 例2.计算(1) 7.2 - (-4.8) ; (2) (-3 - ) - 5 说明:讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。 (三) 巩固练习环节: 让学生完成课本p82的练习2、3,巩固有理数减法法则的运用,强化学生对这节课的掌握。第2题口答,第3题请6个学生上台板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。 (四) 课堂小结环节:(师生共同完成) 本节课学习了有理数的减法运算,进行有理数的减法运算时转化成加法进行计算,即a-b=a+(-b) (五)布置课后作业:课本p83习题2.6的2、3、4、5的偶数题 通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。 (六)板书设计:(略) 最新七年级下数学教案模板2 一、教学目标 1.了解推理、证明的格式,理解判定定理的证法. 2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证. 3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力. 4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育. 二、学法引导 1.教师教法:启发式引导发现法. 2.学生学法:积极参与、主动发现、发展思维. 三、重点·难点及解决办法 (一)重点 判定定理的推导和例题的解答. (二)难点 使用符号语言进行推理. (三)解决办法 1.通过教师正确引导,学生积极思维,发现定理,解决重点. 2.通过教师指导,学生自行完成推理过程,解决难点及疑点. 四、课时安排 1课时 五、教具学具准备 三角板、投影仪、自制胶片. 六、师生互动活动设计 1.通过设计练习,复习基础,创造情境,引入新课. 2.通过教师指导,学生探索新知,练习巩固,完成新授. 3.通过学生自己总结完成小结. 七、教学步骤 (一)明确目标 掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力. (二)整体感知 以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知. (三)教学过程 创设情境,复习引入 师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影). 学生活动:学生口答第1、2题. 师:你能说出有什么条件,就可以判定两条直线平行呢? 学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行. 教师将第3题图形画在黑板上. 学生活动:学生口答理由,同角的补角相等. 师:要求学生写出符号推理过程,并板书. 【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点. 师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角? 学生活动:同分内角. 师:它们有什么关系. 学生活动:互补. 师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题. 最新七年级下数学教案模板3 教材分析 1、知识结构 2、重点、难点分析 重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性. 难点:推论证明的思路和方法.因为它体现了学生的抽象思维能力,由于学生对逻辑的理解不深刻,往往找不出的思维切入点,证明的盲目性很大,因此对学生证明的思路和方法的训练是教学的难点. (二) 教学建议 1、四个注意 (1)注意:公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题;公理可以作为判定其他命题真假的根据. (2)注意:定理都是真命题,但真命题不一定都是定理.一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题.这些被选作定理的真命题,在教科书中是用黑体字排印的. (3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断.如“两直线平行,同位角相等”这个命题,如果只采用测量的方法.只能测量有限个两平行直线的同位角是相等的.但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等. (4)注意:证明中的每一步推理都要有根据,不能“想当然”.论据必须是真命题,如:定义、公理、已经学过的定理和巳知条件;论据的真实性不能依赖于论证的真实性;论据应是论题的充足理由. 2、逐步渗透数学证明的思想: (1)加强数学推理(证明)的语言训练使学生做到,能用准确的语言表述学过的概念和命题,即进行语言准确性训练;能学会一些基本的推理论证语言,如“因为,所以”句式,“如果,那么”句式等等;提高符号语言的识别和表达能力,例如,把要证明的命题结合图形,用已知,求证的形式写出来. (2)提高学生的“图形”能力,包括利用大纲允许的工具画图(垂线、平行线)的能力和在对要证命题的理解(如分清题设、结论)的基础上,画出要证明的命题的图形的能力,后一点尤其重要,一般通过图形易于弄清命题并找出证明的方法. (3)加强各种推理训练,一般应先使学生从“模仿”教科书的形式开始训练.首先是用自然语言叙述只有一步推理的过程,然后用简化的“三段论”方法表述出这一过程,再进行有两步推理的过程的模仿;最后,在学完“命题、定理、证明”一单元后,总结证明的一般步骤,并进行多至三、四步的推理.在以上训练中,每一步推理的后面都应要求填注推理根据,这既可训练良好的推理习惯,又有助于掌握学过的命题. 教学目标: 1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤. 2、能用符号语言写出一个命题的题设和结论. 3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力. 教学重点:证明的步骤与格式. 教学难点:将文字语言转化为几何符号语言. 教学过程: 一、复习提问 1、命题“两直线平行,内错角相等”的题设和结论各是什么? 2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截) 3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示) 二、例题分析 例1、 证明:两直线平行,内错角相等. 已知:ab,c是截线. 求证:1=2. 分析:要证1=2, 只要证3=2即可,因为 3与1是对顶角,根据平行线的性质, 易得出3=2. 证明:ab(已知), 3=2(两直线平行,同位角相等). 1=3(对顶角相等), 1=2(等量代换). 例2、 证明:邻补角的平分线互相垂直. 已知:如图,AOB+BOC=180°, OE平分AOB,OF平分BOC. 求证:OEOF. 分析:要证明OEOF,只要证明EOF=90°,即1+2=90°即可. 三、课堂练习: 1、平行于同一条直线的两条直线平行. 2、两条平行线被第三条直线所截,同位角的平分线互相平行. 四、归纳小结 主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪. 五、布置作业 课本P1435、(2),7. 六、课后思考: 1、垂直于同一条直线的两条直线的位置关系怎样? 2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样? 3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样? 最新七年级下数学教案模板4 相交线 课型:新授课 备课人:徐新齐 审核人:霍红超 学习目标 1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛 2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角 重点、难点 重点:邻补角、对顶角的概念,对顶角性质与应用. 难点:理解对顶角相等的性质的探索. 教学过程 一、复习导入 教师在轻松欢快的音乐中演示第五章章首图片为主体的课件. 学生欣赏图片,阅读其中的文字. 师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题. 二、自学指导 观察剪刀剪布的过程,引入两条相交直线所成的角 握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大. 三、 问题导学 认识邻补角和对顶角,探索对顶角性质 (1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流. AOC和BOC有一条公共边OC,它们的另一边互为反向延长线. AOC和BOD有公共的顶点O,而是AOC的两边分别是BOD两边的反向延长线. ( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等. (3).概括形成邻补角、对顶角概念. 有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角. 如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角. 四、典题训练 1.例:如图,直线a,b相交,1=40°,求2,3,4的度数. 2.:判断下列图中是否存在对顶角. 小结 自我检测 一、判断题: 1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( ) 2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( ) 二、填空题: 1.如图1,直线AB、CD、EF相交于点O,BOE的对顶角是_,COF 的邻补角是_.若AOC:AOE=2:3,EOD=130°,则BOC=_. (1) (2) 2.如图2,直线AB、CD相交于点O,COE=90°,AOC=30°,FOB=90°, 则EOF=_. 三、解答题: 1.如图,直线AB、CD相交于点O. (1)若AOC+BOD=100°,求各角的度数. (2)若BOC比AOC的2倍多33°,求各角的度数.毛 2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少? 最新七年级下数学教案模板5 一、知识导航 1、主要概念:变量是 ;自变量是 ;因变量是 。 2、变量之间关系的三种表示方法: 。 其特点是:列表:对于表中自变量的每一个值,可以不通过计算,直接把 的值找到,查询方便;但是欠 ,不能反映变化的全貌,不易看出变量间的对应规律。 关系式:简明扼要、规范准确;但有些变量之间的关系很难或不能用关系式表示。图像:形象直观。可以形象地反映出事物变化的过程、变化的趋势和某些特征;但图像是近似的、局部的,由图像确定因变量的值欠准确。 3、主要数学思想方法:类比和比较的方法(举例说明);数形结合和数学建模思想(举例说明)。 二、学习导航 1、有关概念应用 例1下列各题中,那些量在发生变化?其中自变量和因变量各是什么? 用总长为60的篱笆围成一边长为L(m),面积为S(m2)的矩形场地; 正方形边长是3,若边长增加x,则面积增加为y. 2、利用表格寻找变化规律 例2 研究表明,固定钾肥和磷肥的施用量,土豆的产量与氮肥的施用量有如下关系: 施肥量 (千克/公顷) 0 34 67 101 135 202 259 336 404 471 土豆产量 (吨/公顷) 15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75 上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?根据表格中的数据,你认为氮肥的使用量是多少时比较适宜? 变式(湖南)一辆小汽车在高速公路上从静止到起动10秒后的速度经测量如下表: 时间/秒 0 1 2 3 4 5 6 7 8 9 10 速度/米/秒 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9 上表反映了哪两个变量之间的关系?哪个是因变量? 如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么? 当t每增加1秒时,v的变化情况相同吗?在哪1秒中,v的增加? 若高速公路上小汽车行驶的速度的上限为120千米/时,试估计大约还需要几秒小汽车速度就将达到这个上限? 3、用关系式表示两变量的关系 例3.、设一长方体盒子高为10,底面积为正方形,求这个长方形的体积v与底面边长a的关系。设地面气温是20,如果每升高1km,气温下降6,求气温与t高度h的关系。 变式(江西)如图,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是: . 4、用图像表示两变量的关系 例4、(桂林)今年,在我国内地发生了“非典型肺炎”疫情,在党和政府的正确领导下,目前疫情已得到有效控制.下图是今年5月1日至5月14日的内地新增确诊病例数据走势图(数据来源:卫生部每日疫情通报).从图中,可知道: (1)5月6日新增确诊病例人数为 人; (2)在5月9日至5月11日三天中,共新增确诊病例人数为 人; (3)从图上可看出,5月上半月新增确诊病例总体呈 趋势. 例5、(陕西) 星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是(). A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了 B.从家出发,到了一个公共阅报栏,看了一会儿报后, 继续向前走了一段,然后回家了 C.从家出发,一直散步(没有停留),然后回家了 D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返 变式 (成都)右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据这个行驶过程中的图象填空:汽车出发小时与电动自行车相遇;电动自行车的速度为 千米/时;汽车的速度为 千米/时;汽车比电动自行车早 小时到达B地. 三、一试身手 1、(贵阳)小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是() 2、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余 部分的高度y(厘米)与燃烧时间x(小时) 之间的关系如图所示. 请根据图象所提供的信息解答下列问题: (1)甲、乙两根蜡烛燃烧前的高度分别是, 从点燃到燃尽所用的时间分别是; (2)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低? 3、(2006宿迁课改)小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是() A.8.6分钟 B.9分钟 C.12分钟 D.16分钟 4、某机动车出发前油箱内有油42l,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(L)之间的关系如图8 所示. 回答问题:(1)机动车行驶几小时后加油? (2)中途中加油_L; (3)已知加油站距目的地还有 ,车速为 , 若要达到目的地,油箱中的油是否够用?并说明原因. 5、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值. 所挂质量 0 1 2 3 4 5 弹簧长度 18 20 22 24 26 28 (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当所挂物体重量为 时,弹簧多长?不挂重物时呢? (3)若所挂重物为 时(在允许范围内),你能说出此时的弹簧长度吗? 6、小明在暑期社会实距活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图9所示.请你根据图象提供的信息完成以下问题: (1)求降价前销售金额y(元)与售出西瓜 (千克)之间的关系式; (2)小明从批发市场共购进多少千克西瓜? (3)小明这次卖瓜赚子多少钱? 7、如图中的折线ABC是甲地向乙地打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的关系的图象. (1)通话1分钟,要付电话费多少元?通话5分钟要付多少电话费? (2)通话多少分钟内,所支付的电话费不变? (3)如果通话3分钟以上,电话费y(元)与时间t(分钟)的关系式是 ,那么通话4分钟的电话费是多少元? 8、如图是某水库的蓄水量v(万米3)与干旱持续时间t(天)之间的关系图,回答下列问题: (1)该水库原蓄水量为多少万米3?持干旱持续时间10天后,水库蓄水量为多少万米3? (2)若水库的蓄水量小于400万米3时,将发生严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报? (3)按此规律,持续干旱多少天时,水库将干涸? 9、(成都市)某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为 元和 元. (1)写出 、 与x之间的关系式; (2)一个月内通话多少分钟,两种移动通讯费用相同? (3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?