欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    平面向量在三角形中的应用 (2).ppt

    • 资源ID:35492878       资源大小:364.52KB        全文页数:15页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    平面向量在三角形中的应用 (2).ppt

    O222222OABCOBCAOCAB O1.1 在同一平面上,有在同一平面上,有ABC及一点及一点满足关系式满足关系式,则,则A内心内心B垂心垂心C外心外心D重心重心是是ABC的(的( )变式训练:变式训练:()|ABACOPOAABAC (0,)1.2 已知已知O是是ABC所在平面内的一定点,动点所在平面内的一定点,动点P满足满足,则动点则动点P的轨迹一定通过的轨迹一定通过ABC的(的( )A内心内心B垂心垂心C外心外心D重心重心()|sin|sinABACOP OAABBACC (0,)1.3已知已知O是是ABC所在平面内的一定点,动点所在平面内的一定点,动点P满足满足,A内心内心 B垂心垂心C外心外心D重心重心,则动点,则动点P的轨迹的轨迹一定通过一定通过ABC的(的( )O222222OABCOBCAOCAB O1.1 在同一平面上,有在同一平面上,有ABC及一点及一点满足关系式满足关系式,则,则A内心内心B垂心垂心C外心外心D重心重心是是ABC的(的( )OCAB2222OABCOBCA 解:由解:由2222OAOCOBOBOAOC 即:即:()0OCOBOAOC AB 化简有:化简有:,OABC OBAC同理有:同理有:OABC为为的垂心的垂心. .B变式训练:变式训练:()|ABACOPOAABAC (0,)1.2 已知已知O是是ABC所在平面内的一定点,动点所在平面内的一定点,动点P满足满足,则动点则动点P的轨迹一定通过的轨迹一定通过ABC的(的()A内心内心B垂心垂心C外心外心D重心重心解:由已知解:由已知()|ABACAPABAC 所以动点所以动点P的轨迹一定通过的轨迹一定通过ABC的内心的内心. A变式训练:变式训练:ABCDEFP()|sin|sinABACOP OAABBACC (0,)1.3已知已知O是是ABC所在平面内的一定点,动点所在平面内的一定点,动点P满足满足,A内心内心 B垂心垂心C外心外心D重心重心,则动点,则动点P的轨迹的轨迹一定通过一定通过ABC的(的( )|sin|sinABBACC 解:由正弦定理知:解:由正弦定理知:()|sin|sinABACOP OAABBACC 又又()|sinAPAB ACABB 所以所以故点故点P轨迹通过轨迹通过ABC的重心的重心D变式训练:变式训练:ABC)(OCOBOAmOHm的外接圆的圆心为的外接圆的圆心为O,两条边上的高的交点为,两条边上的高的交点为H,则实数,则实数 OCOBOAOH解法一:解法一:特例法特例法ABC为一个直角三角形,则为一个直角三角形,则O点斜边的中点,点斜边的中点,设设顶点,这时有顶点,这时有H点为直角点为直角,1.m 高考真题再现,DAAB CHABAHDCOHOAAHOAOBOC 解法二:解法二:连连BO延长交延长交 O于于D,连,连AD、CD.CHDA同理,同理,AHDC,DCDOOCOBOC 又又OHABDC 四边形四边形AHCD为平行四边形为平行四边形CAHBOABCOGH三角形的欧拉线:三角形的欧拉线: 外心外心O、重心、重心G、垂心、垂心H三点共线且三点共线且OG = = GH123()3OGOHm OAOBOCmOG 5121,3PACABCSS512PBCABCPACPABABCSSSSSACBDPENM解法一:利用平面向量基本定理解法一:利用平面向量基本定理ACABAP4131ABCPBCSS例例2. 设设P为为ABC内一点,且满足内一点,且满足,则,则14PABABCSS典型例题典型例题ACABAP41311113()3434APABACABAC 11313344PABABDABCABCSSSS44141313333343PACPADABDABCABCSSSSS512PBCABCPACPABABCSSSSS法二:法二:构造三角形的重心构造三角形的重心34ADAC 取点取点D使得使得则点则点P为为ABD的重心的重心,连接,连接BD,P DABCACABAP4131ABCPBCSS例例2.设设P为为ABC内一点,且满足内一点,且满足,则,则512变式训练:变式训练:032PCPBPAACPBCPABP,2.1 已知已知P为为ABC内一点,且满足内一点,且满足,则,则面积之比为面积之比为ABCABOABCCAOABCBCOSSSSSS,OCOBOA2.2 设设O为为ABC内一点,记内一点,记,则则变式训练:变式训练:032PCPBPAACPBCPABP,2.1 已知已知P为为ABC内一点,且满足内一点,且满足,则,则面积之比为面积之比为3:1:2解法一:利用平面向量基本定理解法一:利用平面向量基本定理1132APABAC 得得 032PCPBPA由由1,3PACABCSS12PABABCSS111(1)326PBCABCABCSSS111:3 :1: 2263ABPPBCACPSSS230PAPBPC ACPBCPABP,2.1 已知已知P为为ABC内一点,且满足内一点,且满足,则,则面积之比为面积之比为法二:构造三角形及重心法二:构造三角形及重心2PBPB 3PCPB 0PAPBPC 则则P为的重心为的重心.AB C1,2PABPABSS16PBCPB CSS13PACPACSS令令111:3 :1: 2263ABPPBCACPSSS013103OAOBOCOAOBOC 解法一:特例法取解法一:特例法取O为为ABC的重心,则的重心,则ABCABOABCCAOABCBCOSSSSSS,OCOBOA2.2 设设O为为ABC内一点,记内一点,记,则则变式训练:变式训练:ADAEAOADAEABACABAC 0OAOBOC BODEABCABOABCCAOABCBCOSSSSSS,OCOBOA2.2设设O为为ABC内一点,记内一点,记,则则()ABACOBOCOA 1r由题知由题知,CAOABOABCABCSSADAESABSAC法二:法二:过过O分别作分别作、的平行线的平行线OD、OE,交交于于D,交,交于于E,则,则00.OAOBOC , , ,ABCSBCOCAOABOSSS,引申:引申: 设设O为为ABC内一点,内一点,记记= =m, , 则则分别为分别为 2、已知、已知A、B、C是平面上不共线的三点,是平面上不共线的三点,O为平面为平面ABC内内1(1)(1)(12 ), ()3OPOAOBOCR A内心内心 B垂心垂心C外心外心D重心重心任一点,动点任一点,动点P满足等式满足等式则动点则动点P的轨迹一定通过的轨迹一定通过ABC的(的( )bACaAB,bnAQamAP,nm113、已知、已知G为为ABC的重心,令的重心,令点点G分别交分别交AB,AC于于P,Q两点,且两点,且,则,则,若,若PQ过过0543OCOBOAC 4、ABC外接圆的圆心为外接圆的圆心为O,且,且,则角,则角, , ,a b c0aOAbOBcOC 1、ABC中三边长分别为O为ABC所在平面内一点,若A 外心 B内心C重心D垂心,则O为ABC的( )课后作业

    注意事项

    本文(平面向量在三角形中的应用 (2).ppt)为本站会员(仙***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开