欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    三种不同平滑滤波器对比(7页).doc

    • 资源ID:35532015       资源大小:143KB        全文页数:7页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    三种不同平滑滤波器对比(7页).doc

    -三种不同平滑滤波器对比-第 5 页燕山大学课 程 设 计 说 明 书题目:几种平滑滤波器的作用与对比试验设计学院(系): 电气工程学院 年级专业: 学 号: 学生姓名: 指导教师: 教师职称: 目录第一章 平滑滤波器1第二章 处理程序和处理结果3第三章 比较差异7第四章 总结9参考文献9第一章平滑滤波器 滤波的本义是指信号有各种频率的成分,滤掉不想要的成分,即为滤掉常说的噪声,留下想要的成分,这即是滤波的过程。 所谓目的:一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入的噪声。 各类图像处理系统在图像的采集、获取、传送和转换(如成像、复制扫描、传输以及显示等)过程中,均处在复杂的环境中,光照、电磁多变,所有的图像均不同程度地被可见或不可见的噪声干扰。噪声源包括电子噪声、光子噪声、斑点噪声和量化噪声。如果信噪比低于一定的水平,噪声逐渐变成可见的颗粒形状,导致图像质量的下降。除了视觉上质量下降,噪声同样可能掩盖重要的图像细节,在对采集到的原始图像做进一步的分割处理时,我们发现有一些分布不规律的椒盐噪声,为此采取相应的对策就是对图像进行必要的滤波降噪处理。图像的噪声滤波器有很多种,常用的有线性滤波器,非线性滤波器。采用线性滤波如邻域平滑滤波,对受到噪声污染而退化的图像复原,在很多情况下是有效的。但大多数线性滤波器具有低通特性,去除噪声的同时也使图像的边缘变模糊了。而另一种非线性滤波器如中值滤波,在一定程度上可以克服线性滤波器所带来的图像模糊问题,在滤除噪声的同时,较好地保留了图像的边缘信息。这些滤波都是通过平滑滤波器来实现的。 平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。所谓平滑滤波是指对一些不平滑的信号做处理,使它变平滑。那什么是不平滑呢,就是在示波器上看起伏不平的信号,最典型的就是交流整流后的脉动信号。这些随时间起伏不平变化的信号成分在频率上代表一些高频率的成分,上升下降越快,则表示频率越高。平滑滤波就是要把它们弄平,把它们弄得不再随时间变化,或者是变化很小,这种不随时间再变化,或者随时间变化很小的信号就是频率非常低的信号,使它们成为低频信号,在整流滤波上,就基本上直流信号,其中只含有非常少的成分随时间变化。所以平滑滤波与低通滤波说法差别不大,平滑滤波大多用在整流滤波上,一般可以理解成一个概念的不同描述方法。 图像在传递过程中,由于噪声主要集中在高频部分,为去除噪声改善图像质量,滤波器采用低通滤波器H(u,v)来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的 根据任务要求在此选择研究理想低通滤波器、Butterworth低通滤波器、高斯低通滤波器三种滤波器来实现要求。设傅立叶平面上理想低通滤波器离开原点的截止频率为D0,则理想低通滤波器的传递函数:式中,D(u,v)=(u2+v2)1/2 表示点(u,v)到原点的距离,D0 表示截止频率点到原点的距离。2. Butterworth 低通滤波器 n 阶Butterworth 滤波器的传递函数为:它的特性是连续性衰减,而不像理想滤波器那样陡峭变化。 高斯低通器传递函数:第二章 处理程序和处理结果I=imread('C:UsersAdministratorDesktopMiss256G.bmp');subplot(221),imshow(I);xlabel('a原图像');s=fftshift(fft2(I);subplot(222),imshow(log(abs(s),);xlabel('b图像傅里叶变换取对数所得频谱'); a,b=size(s);a0=round(a/2);b0=round(b/2);d=10;for i=1:afor j=1:b distance=sqrt(i-a0)2+(j-b0)2); if distance<=d h=1; else h=0; end; s(i,j)=h*s(i,j); end;end;F3=log(abs(s); %对傅里叶变换结果取绝对值,然后取对数?subplot(223),imshow(F3,'InitialMagnification','fit');xlabel('c滤波后的傅里叶变换图像')s=uint8(real(ifft2(ifftshift(s);subplot(224),imshow(s);xlabel('d理想低通滤波图像');图1 理想低通滤波器处理结果2. Butterworth低通滤波器I1=imread('C:UsersAdministratorDesktopMiss256G.bmp');subplot(221),imshow(I1);xlabel('a原始图像');f=double(I1);%强制数据类型转换 转换为double型g=fft2(f);%图像傅里叶转换?g=fftshift(g);%傅里叶变换平移F2=log(abs(g);%对傅里叶变换结果取绝对值,然后取对数?subplot(222),imshow(F2,'InitialMagnification','fit');%将计算后的矩阵用图像表示xlabel('b原始图像的傅里叶变换对数图像');N1,N2=size(g);%傅里叶变换图像尺寸n=2;%参数赋初始值d0=10;n1=fix(N1/2);%数据圆整?n2=fix(N2/2);%数据圆整?for i=1:N1%遍历图像像素? for j=1:N2d=sqrt(i-n1)2+(j-n2)2); if d=0 h=0; else h=1/(1+(d/d0)(2*n); end result(i,j)=h*g(i,j);%图像矩阵计算处理? endendF3=log(abs(result);%对傅里叶变换结果取绝对值,然后取对数?subplot(223),imshow(F3,'InitialMagnification','fit');xlabel('c滤波后的傅里叶变换图像')result=ifftshift(result);X2=ifft2(result);X3=uint8(real(X2);%把double型矩阵变换为uint8型subplot(224),imshow(X3)xlabel('dButterworth低通滤波图像');图2 Butterworth低通滤波器处理结果I=imread('C:UsersAdministratorDesktopMiss256G.bmp');%读取图像subplot(221),imshow(I);xlabel('原始图像'); s=fftshift(fft2(I);F2=log(abs(s); %对傅里叶变换结果取绝对值,然后取对数?subplot(222),imshow(F2,'InitialMagnification','fit');xlabel('b原始图像的傅里叶变换对数图像');M,N=size(s); %分别返回s的行数到M中,列数到N中d0=10; %初始化d0n1=floor(M/2); %对M/2进行取整n2=floor(N/2); %对N/2进行取整for i=1:M for j=1:N d=sqrt(i-n1)2+(j-n2)2); %点(i,j)到傅立叶变换中心的距离 h=1*exp(-1/2*(d2/d02); %高斯低通滤波函数 s(i,j)=h*s(i,j); %高斯低通滤波后的频域表示 endendF3=log(abs(s); %对傅里叶变换结果取绝对值,然后取对数subplot(223),imshow(F3,'InitialMagnification','fit');xlabel('c滤波后的傅里叶变换图像')s=ifftshift(s); %对s进行反FFT移动s=uint8(real(ifft2(s); %创建图形图像对象subplot(224),imshow(s); %显示GLPF滤波处理后的图像xlabel('d高斯低通滤波图像'); %为经GLPF滤波后的图像添加标题图3 高斯低通滤波器处理结果第三章比较差异图4 相同条件下三种滤波器的图像 由图中可以得到,在相同的参数条件下,三种不同的平滑滤波器滤波后所得到的图像是不一样的,在这三种平滑滤波器中Butterworth低通滤波器滤波后的傅里叶变换图像最大,其次是高斯低通滤波器,最小的即为理想低通滤波器,而对于滤波图像而言,高斯低通滤波器所得到图像在三个图像里面最清晰,其次是Butterworth低通滤波器,最模糊的是理想低通滤波器。 对于平滑效果来说,图像越模糊,平滑效果越好,所以由图中可以得到理想低通滤波器的平滑效果最好,其次是Butterworth低通滤波器,高斯低通滤波器的平滑效果最差。图5 选定的滤波器不同参数的图像 对于选定的高斯低通滤波器改变d的值会改变图像处理的效果,d的值越大滤波后的傅里叶变换图像越大,所得到的高斯低通滤波图像就越清晰。此结论对于Butterworth低通滤波器和理想低通滤波器同样适用。第四章 总结 这次课程设计老师给的时间特别短暂,在教室只有两天的时间给你去做,明显是不够的,这就要求我们自己去加班做了,这个感觉还是挺充实的,这次课程设计让我对滤波器有了更深一步的认知,通过上网查资料学习到了很多课本没有的知识。我们必须认真、谨慎、踏实、一步一步的完成设计。认真的去学习和研究,自己独立的完成一个项目,我相信无论是谁看到自己做出的成果时心里一定会很兴奋。感谢老师给我们这次课程设计的机会!参考文献1 章毓晋 计算机视觉教程 人民邮电出版社2 张汗灵 MATLAB在图像处理中的应用 清华大学出版社3 周建兴 MATLAB从入门到精通人民邮电出版社燕山大学课程设计评审意见表指导教师评语:该生学习态度 (认真 较认真 不认真) 该生迟到、早退现象 (有 无)该生依赖他人进行设计情况 (有 无)平时成绩: 2015 年12月25 日图面及其它成绩:答辩小组评语:设计巧妙,实现设计要求,并有所创新。 设计合理,实现设计要求。 实现了大部分设计要求。 没有完成设计要求,或者只实现了一小部分的设计要求。 答辩成绩: 2015年12月25日课程设计总成绩:答辩小组成员签字:2015年 12月 25日

    注意事项

    本文(三种不同平滑滤波器对比(7页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开