欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    初一下分式经典题型汇总.docx

    • 资源ID:35558890       资源大小:569.79KB        全文页数:25页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    初一下分式经典题型汇总.docx

    分式各知识点及例题【知识精读】(一)、分式定义及有关题型一、分式的概念:形如(A、B是整式,且B中含有字母,B0)的式子,叫做分式。概念分析:必须形如“”的式子;可以为单项式或多项式,没有其他的限制;可以为单项式或多项式,但必须含有字母。例:下列各式中,是分式的是1+练习:1、下列有理式中是分式的有( )A、 B、 C、 D、2、下列各式中,是分式的是1、下列各式:其中分式共有( )个。A、2 B、3 C、4 D、5二、有理式:整式和分式统称有理式。即:例:把下列各有理式的序号分别填入相应的横线上0 整式:;分式。三、分式有意义的条件:分母不等于零分式有意义:分母不为0()分式无意义:分母为0()分式值为0:分子为0且分母不为0()分式值为正或大于0:分子分母同号(或)分式值为负或小于0:分子分母异号(或)分式值为1:分子分母值相等(A=B)分式值为-1:分子分母值互为相反数(A+B=0)分式的值为整数:(分母为分子的约数)例:当x时,分式有意义;当x时,有意义。练习:1、当x时,分式无意义。2使分式无意义,x的取值是( ) A0 B1 C D3、分式,当时有意义。 4、当a时,分式有意义5、当x时,分式有意义。6、当x时,有意义。7、分式有意义的条件是。8、当x时,分式的值为1;9(辨析题)下列各式中,无论取何值,分式都有意义的是( ) AB C D10.当为任意实数时,下列分式一定有意义的是( )A. B. C. D. 四、分式的值为零说明:分式的分子的值等于零;分母不等于零例1:若分式的值为0,那么x。例2 . 要使分式的值为0,只须( ).(A) (B) (C) (D)以上答案都不对练习:1、当x时,分式的值为零。2、要使分式的值是0,则的值是; 3、 若分式的值为0,则x的值为4、若分式的值为零,则x的值是5、若分式的值为0,那么x。6、若分式的值为零,则7、如果分式的值为0,那么x的值是( ) A0 B. 5 C5 D±58、分式有意义的条件是,分式的值等于零的条件是。9、已知当时,分式 无意义,时,此分式的值为0,则的值等于( ) A6 B2 C6 D210、使分式的值为正的条件是11、若分式的值为正数,求a的取值范围12、当x时,分式的值为负数13、当为何值时,分式为非负数.14、若关于x的方程ax=3x-5有负数解,则a的取值范围是典型题:分式的值为整数:(分母为分子的约数)练习1、若分式的值为正整数,则x=2、若分式的值为整数,则x=3、若x取整数,则使分式的值为整数的x值有( )A3个 B4个 C6个 D8个(二)分式的基本性质及有关题型分式的基本性质:分式的分子及分母都乘以(或除以)同一个不等于零的整式,分式的值不变。1分式的基本性质:2分式的变号法则:例1: 练习:1.填空: ; ; 例2:若A、B表示不等于0的整式,则下列各式成立的是( D ).(A)(M为整式) (B)(M为整式) (C) (D)3、下列各式中,正确的是( ) AB=0CD题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)(2)练习:1不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)(2)1(辨析题)不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以( ) A10 B9 C45 D904不改变分式的值,使分式的分子分母各项系数都化为整数,结果是1、不改变分式的值,使分式的分子、分母中各项系数都为整数,2、不改变分式的值,把分子、分母中各项系数化为整数,结果是题型二:分式的符号变化:【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)(2)(3)1、不改变分式的值,使下列分式的分子及分母的最高次项的系数是正数。=2(探究题)下列等式:;中,成立的是( ) A B C D3(探究题)不改变分式的值,使分子、分母最高次项的系数为正数,正确的是( ) A B C D题型三:分式的倍数变化:1、如果把分式中的x,y都扩大3倍,那么分式的值2、.如果把分式中的x,y都扩大10倍,那么分式的值3、把分式中的x,y都扩大2倍,则分式的值( ) A不变 B扩大2倍 C扩大4倍 D缩小2倍4、把分式中的a、b都扩大2倍,则分式的值( C ).(A)扩大2倍 (B)扩大4倍 (C)缩小2倍 (D)不变.7、若把分式中的x和y都扩大3倍,那么分式的值( )A、扩大3倍 B、不变 C、缩小3倍 D、缩小6倍2、若x、y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A、 B、 C、 D、(三)分式的运算4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。学习时应注意以下几个问题:(1)注意运算顺序及解题步骤,把好符号关;(2)整式及分式的运算,根据题目特点,可将整式化为分母为“1”的分式;(3)运算中及时约分、化简;(4)注意运算律的正确使用;(5)结果应为最简分式或整式。一、分式的约分:先将分子、分母分解因式,再找出分子分母的公因式,最后把公因式约去(注意:这里找公因式的方法和提公因式中找公因式的方法相同)最简分式:分子、分母中不含公因式。分式运算的结果必须化为最简分式1、 约分(1) (2) (3) (4) 例2计算:例5计算:2、 约分(1)=;(2)=;3、化简的结果是()A、 B、 C、 D、4(辨析题)分式,中是最简分式的有( ) A1个 B2个 C3个 D4个5、分式,中,最简分式有( )A 1个 B 2个 C 3个 D 4个6、下列公式中是最简分式的是( ) A B C D7、约分:(1); (2)(3)例:将下列各式约分,化为最简分式8、计算:÷·9. 已知:,则的值等于() A. B. C. D. 10、已知x+3,求的值九、最简公分母1确定最简公分母的方法:如果分母是多项式,要先将各个分母分解因式,分解因式后的括号看做一个整体;最简公分母的系数:取各分母系数的最小公倍数;最简公分母的字母(因式):取各分母中所有字母(因式)的最高次幂.2确定最大公因式的方法:最大公因式的系数取分子、分母系数的最大公约数;取分子、分母相同的字母因式的最低次幂.例:分式和的最简公分母是分式和的最简公分母是题型一:通分【例1】将下列各式分别通分.(1);(2);(3);(4)1在解分式方程:2的过程中,去分母时,需方程两边都乘以最简公分母是_.2、分式的最简公分母为。3计算:十、分式通分的方法:先找出要通分的几个分式的最简公分母;运用分式的基本性质把它们变形成同分母的分式。例:,的最简公分母是,通分后,=。,的最简公分母是,通分后=,=。十一、分式的乘法:分子相乘,积作分子;分母相乘,积作分母;如果得到的不是最简分式,应该通过约分进行化简。题型二:约分【例】约分:(1);(3);(3).1、计算2、已知a+b3,ab1,则+的值等于= =十二、分式的除法:把除式的分子、分母颠倒位置后,及被除式相乘。例:= =九、 零指数幂及负整指数幂 () (任何不等于零的数的零次幂都等于1)其中m,n均为整数。十、 科学记数法a×10-n,其中n是正整数,1a10.7个0如0.000000125=10、负指数幂及科学记数法1直接写出计算结果:(1)(-3)-2; (2);(3); (4)2、用科学记数法表示0.000 501=3、一种细菌半径是1.21×10-5米,用小数表示为米。24、十三、分式的乘方:分子、分母分别乘方。例:= =十四、同分母的分式相加减:分母不变,只把分子相加减,再把结果化成最简分式。例: = =十五、异分母的分式相加减:先通 分成同分母的分式,在进行加减。例:= =十六、分式的计算:1、 2、【例】计算:(1);(2);(3);(4);(5);(6);(7)2、化简分式()÷,并从1x3中选一个你认为合适的整数x代入求值3、,其中4、计算(1);(2);(3);(4);(5);(6)(7)、(8)、(9)、(10)、5、先化简,再求值:,其中x=26、先化简,再求值:,其中x=7、先化简,再求值:,其中:x=2。十七、分式的化简:1、计算等于。2、化简分式的结果是3、计算的结果是4、计算的结果是5、计算的结果是6、化简等于7、分式:,中,最简分式有.8、计算的结果是9、计算的结果是十八、化简分式求代数式的值:1、若,则的值是。2先化简后求值(1),其中满足.(2)已知,求的值.3、 ( )A、-2 B、-3 C、-4 D、-54、若,试求的值.5、已知:,则_6、若已知(其中A、B为常数),则A=_,B=_;【例】已知:,求的值.【例】若,求的值.1、已知,求分式的值。2(2005杭州市)当_时,分式的值为零3(妙法巧解题)已知,求的值4、已知a23a+1=0,则=_4、已知,则M及N的关系为( )A.M>N B.M=N C.M<N D.不能确定.题型四:化简求值题【例】先化简后求值(1)已知:,求分子的值;(2)已知:,求的值;(3)已知:,试求的值.1、若4x=5y,则的值等于( )A B C D 2、已知,则。【例】已知:,求的值.提示:整体代入,转化出.2已知:,求的值.3已知:,求的值.4若,求的值.5如果,试化简.2、当1<x<2时,化简分式=。3、当x时,。4、若3x=2y,则的值等于5、若x等于本身的倒数,则的值是6、当时,的值是1;7、若的值是8、若=9、如果,则.10、已知,那么=.11、已知,则,12、若,则的值为(四)、整数指数幂及科学记数法题型一:运用整数指数幂计算【例1】计算:(1)(2)(3)(4)题型二:化简求值题【例2】已知,求(1)的值;(2)求的值.题型三:科学记数法的计算【例3】计算:(1);(2).练习:的2220120+(6)÷3;1计算:(1)(2)(3)(4)2已知,求(1),(2)的值.3已知x+=3,则x2+= _ 4、已知,求分式的值。第二讲 分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题 【主要方法】1.分式方程主要是看分母是否有外未知数; 2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母. 3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数. 16.3 分式方程化分式为整式解方程验根(4)写出解1、学完分式运算后,老师出了一道题“化简:”小明的做法是:原式;小亮的做法是:原式;小芳的做法是:原式其中正确的是( )A小明B小亮C小芳D没有正确的2. (15届江苏初二1试)已知,其中A、B为常数,那么AB的值为()A、2B、2C、4D、43. 甲、乙两地相距S千米,某人从甲地出发,以v千米/小时的速度步行,走了a小时后改乘汽车,又过b小时到达乙地,则汽车的速度() A. B. C. D. (一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程(1);(2);(3);(4)提示易出错的几个问题:分子不添括号;漏乘整数项;约去相同因式至使漏根;忘记验根.题型二:特殊方法解分式方程【例2】解下列方程(1); (2)提示:(1)换元法,设;(2)裂项法,.【例3】解下列方程组题型三:求待定字母的值【例4】若关于的分式方程有增根,求的值.【例5】若分式方程的解是正数,求的取值范围.提示:且,且.1、已知关于x的方程的解是正数,则m的取值范围为.2指出下列解题过程是否存在错误,若存在,请加以改正并求出正确的答案题目:当x为何值,分式有意义?解:=,由x20,得x2所以当x2时,分式有意义题型四:解含有字母系数的方程【例】解关于的方程提示:(1)是已知数;(2).题型五:列分式方程解应用题练习:1解下列方程:(1);(2);(3);(4)(5)(6)(7)2解关于的方程:(1);(2).3如果解关于的方程会产生增根,求的值.4当为何值时,关于的方程的解为非负数.5已知关于的分式方程无解,试求的值.(二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:一、交叉相乘法例1解方程:二、化归法例2解方程:三、左边通分法例3:解方程:四、分子对等法例4解方程:五、观察比较法例5解方程:六、分离常数法例6解方程:七、分组通分法例7解方程:(三)分式方程求待定字母值的方法例1若分式方程无解,求的值。例2若关于的方程不会产生增根,求的值。例3若关于分式方程有增根,求的值。例4若关于的方程有增根,求的值。9.若m等于它的倒数,求分式的值;2. 已知x2+4y2-4x+4y+5=0,求·÷()2的值.练习1.若,求的值.19已知且y0,则=_十九、分式方程的概念:分母中含有未知数的方程叫做分式方程。例:下列方程中式分式方程的有二十、“可化为一元一次方程的分式方程”的解法:去分母:先看方程中有几个分母,找出它们的最简公分母,在方程的左右两边都乘以它们的最简公分母,约去分母,将分式方程化成一元一次方程。解方程:解去分母得到的这个一元一次方程。验根:将解一元一次方程得到的解带入最简公分母中计算:如果最简公分母的值为0,则这个解是方程的增根,原分式方程无解;如果最简公分母的值不为0,则这个解就是原分式方程的解。例:解下列分式方程(步骤参照教材上的例题)5、中考题解:例1若解分式方程产生增根,则m的值是() A. B. C. D. 11、分式方程1若无解,则m的值是 ( )A.2 B. 2 C. 3 D. 32解方程: (1) (2)1 (3)。3在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A千米B千米C千米D无法确定4一辆汽车往返于相距akm的甲、乙两地,去时每小时行mkm,返回时每小时行nkm,则往返一次所用的时间是_13、分式方程应用题1、甲打字员打9000个字所用的时间及乙打字员打7200个字所用的时间相同,已知甲、乙两人每小时共打5400个字,问甲、乙两个打字员每小时各打多少个字?2、一名同学计划步行30千米参观博物馆,因情况变化改骑自行车,且骑车的速度是步行速度的1.5倍,才能按要求提前2小时到达,求这位同学骑自行车的速度。3列方程解应用题从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B乘车从甲地出发,结果同时到达。已知B乘车速度是A骑车速度的3倍,求两车的速度。4小张和小王同时从学校出发去距离15千米的一书店买书,小张比小王每小时多走1千米,结果比小王早到半小时,设小王每小时走x千米,则可列出的的方程是( )A、 B、C、 D、5、赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下列方程中,正确的是()A、 B、B、 D、二十一、增根:使分式方程的最简公分母的值为0的未知数的值。注意:“可化为一元一次方程的分式方程”有增根,那么原方程无解,但这个增根是去分母后得到的一元一次方程的解,能使这个一元一次方程左右两边的值相等。例:已知关于x的分式方程有增根,则a=练习:1、若方程有增根,则增根是 。2、取时,方程会产生增根;3、若关于x的方程 有解,则必须满足条件( )A. ab ,cd B. ab ,c-d C.a-b , cd C.a-b , c-d4、 若分式方程有增根,则a的值是5、当m=_时,方程会产生增根.6、若方程有增根,则增根是.7、关于x的分式方程有增根x=-2,则k=.8、.关于x的方程无解,m的值为_。9、先化简代数式:,然后选取一个使原式有意义的的值代入求值知识点二:整数指数幂的运算1(基本技能题)若(x-3)-2有意义,则x_; 若(x-3)-2无意义,则x_2(基本技能题)5-2的正确结果是( ) A- B C D-3已知a0,下列各式不正确的是( ) A.(-5a)0=1 B.(a2+1)0=1 C.(a-1)0=1 D.()0=16 计算: ()-1+()0-(-)-1(2m2n-3)-3·(-mn-2)2·(m2n)0(-0.125)-2 003÷(-)-2 004二十四、科学记数法:把一个数表示成(或者)的形式,其中n为正整数,例:用科学记数法表示下列各数 0.0000314=-0.0000064=201300=练习:1、将下列用科学记数法表示数还原:=2、用科学记数法表示下列各数 0.0000314=-0.0000064=3、人体中成熟的红细胞的平均直径为米,用科学记数法表示为二十 五、列分式填空:1、某农场原计划用m天完成A公顷的播种任务,如果要提前a天结束,那么平均每天比原计划要多播种公顷.2、某厂储存了t天用的煤m吨,要使储存的煤比预定的多用d天,那么每天应节约煤的吨数为3、每千克单价为元的糖果千克及每千克单价为元的糖果千克混合,则混合后糖果的单价为4、全路全长m千米,骑自行车b小时到达,为了提前1小时到达,自行车每小时应多走千米.10、A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程( )A、B、C .D.二十六、列分式方程填空:1、某煤厂原计划天生产120吨煤,由于采用新的技术,每天增加生产3吨,因此提前2天完成任务,列出方程为2、工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程72-x=x+3x=72 上述所列方程,正确的有( )个二十七、列分式方程解应用题:1、某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走45分钟后,乙班的师生乘汽车出发,结果两班师生同时到达.已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?2、怀化市某乡积极响应党中央提出的“建设社会主义新农村”的号召,在本乡建起了农民文化活动室,现要将其装修若甲、乙两个装修公司合做需8天完成,需工钱8000元;若甲公司单独做6天后,剩下的由乙公司来做,还需12天完成,共需工钱7500元若只选一个公司单独完成从节约开始角度考虑,该乡是选甲公司还是选乙公司?请你说明理由3、华溪学校科技夏令营的学生在3名老师的带领下,准备赴北京大学参观,体验大学生活现有两个旅行社前来承包,报价均为每人2000元,他们都表示优惠;希望社表示带队老师免费,学生按8折收费;青春社表示师生一律按7折收费经核算,参加两家旅行社费用正好相等 (1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了部分学生,学校应选择哪家旅行社?7若关于x的方程的解为正数,则a的取值范围是4、在社会主义新农村建设中,某乡镇决定对一段公路进行改造已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成 (1)求乙工程队单独完成这项工程所需的天数; (2)求两队合做完成这项工程所需的天数

    注意事项

    本文(初一下分式经典题型汇总.docx)为本站会员(叶***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开