高等数学上册 第一章教案.docx
第一章:函数、极限及连续教学目的及要求 1.解函数的概念,驾驭函数的表示方法,并会建立简洁应用问题中的函数关系式。2.解函数的奇偶性、单调性、周期性和有界性。3.理解复合函数及分段函数的概念,理解反函数及隐函数的概念。4.驾驭根本初等函数的性质及其图形。5.理解极限的概念,理解函数左极限及右极限的概念,以及极限存在及左、右极限之间的关系。6.驾驭极限的性质及四则运算法则。7.理解极限存在的两个准则,并会利用它们求极限,驾驭利用两个重要极限求极限的方法。8.理解无穷小、无穷大的概念,驾驭无穷小的比拟方法,会用等价无穷小求极限。9.理解函数连续性的概念(含左连续及右连续),会判别函数连续点的类型。10.理解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。所需学时:18学时(包括:6学时讲授及2学时习题)第一节:集合及函数一般地我们把探讨对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必需是确定的)和互异性(给定集合中的元素是互不一样的)。比方“身材较高的人”不能构成集合,因为它的元素不是确定的。我们通常用大字拉丁字母A、B、C、表示集合,用小写拉丁字母a、b、c表示集合中的元素。假如a是集合A中的元素,就说a属于A,记作:aA,否则就说a不属于A,记作:aA。 、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N、全部正整数组成的集合叫做正整数集。记作N+或N+。、全体整数组成的集合叫做整数集。记作Z。、全体有理数组成的集合叫做有理数集。记作Q。、全体实数组成的集合叫做实数集。记作R。集合的表示方法、列举法:把集合的元素一一列举出来,并用“”括起来表示集合、描绘法:用集合全部元素的共同特征来表示集合。集合间的根本关系、子集:一般地,对于两个集合A、B,假如集合A中的随意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素及集合B中的元素完全一样,因此集合A及集合B相等,记作AB。、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。、空集:我们把不含任何元素的集合叫做空集。记作 ,并规定,空集是任何集合的子集。、由上述集合之间的根本关系,可以得到下面的结论:、任何一个集合是它本身的子集。即A A、对于集合A、B、C,假如A是B的子集,B是C的子集,则A是C的子集。、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。集合的根本运算、并集:一般地,由全部属于集合A或属于集合B的元素组成的集合称为A及B的并集。记作AB。(在求并集时,它们的公共元素在并集中只能出现一次。)即ABx|xA,或xB。、交集:一般地,由全部属于集合A且属于集合B的元素组成的集合称为A及B的交集。记作AB。即ABx|xA,且xB。、补集:全集:一般地,假如一个集合含有我们所探讨问题中所涉及的全部元素,那么就称这个集合为全集。通常记作U。补集:对于一个集合A,由全集U中不属于集合A的全部元素组成的集合称为集合A相对于全集U的补集。简称为集合A的补集,记作CUA。即CUAx|xU,且x A。集合中元素的个数、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。、用card来表示有限集中元素的个数。例如Aa,b,c,则card(A)=3。、一般地,对随意两个集合A、B,有card(A)+card(B)=card(AB)+card(AB)我的问题:1、学校里开运动会,设Ax|x是参与一百米跑的同学,Bx|x是参与二百米跑的同学,Cx|x是参与四百米跑的同学。学校规定,每个参与上述竞赛的同学最多只能参与两项,请你用集合的运算说明这项规定,并说明以下集合运算的含义。、AB;、AB。2、在平面直角坐标系中,集合C(x,y)|y=x表示直线yx,从这个角度看,集合D=(x,y)|方程组:2x-y=1,x+4y=5表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。3、已知集合A=x|1x3,Bx|(x-1)(x-a)=0。试推断B是不是A的子集?是否存在实数a使AB成立?4、对于有限集合A、B、C,能不能找出这三个集合中元素个数及交集、并集元素个数之间的关系呢?5、无限集合A1,2,3,4,n,B2,4,6,8,2n,你能设计一种比拟这两个集合中元素个数多少的方法吗?2、区间、变量的定义:我们在视察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起改变,我们把其称之为常量;有的量在过程中是改变的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是改变的,但是它的改变相对于所探讨的对象是极其微小的,我们则把它看作常量。、变量的表示:假如变量的改变是连续的,则常用区间来表示其改变范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。区间的名称区间的满意的不等式区间的记号区间在数轴上的表示闭区间axba,b开区间axb(a,b)半开区间axb或axb(a,b或a,b)以上我们所述的都是有限区间,除此之外,还有无限区间:a,+):表示不小于a的实数的全体,也可记为:ax+;(-,b):表示小于b的实数的全体,也可记为:-xb;(-,+):表示全体实数,也可记为:-x+注:其中-和+,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。、邻域:设及是两个实数,且0.满意不等式x-的实数x的全体称为点的邻域,点称为此邻域的中心,称为此邻域的半径。3、复合函数复合函数的定义:若y是u的函数y=f(u),而u又是x的函数:u=(x),且u=(x)的函数值的全部或部分在f(u)的定义域内,那末,y通过u的联络也是x的函数,我们称后一个函数是由函数y=f(u)及u=(x)复合而成的函数,简称复合函数,记作y=f(x),其中u叫做中间变量。注:并不是随意两个函数就能复合;复合函数还可以由更多函数构成。例题:函数y=arcsinx及函数u=2+x2是不能复合成一个函数的。因为对于u=2+x2的定义域(-,+)中的任何x值所对应的u值(都大于或等于2),使y=arcsinu都没有定义。4、初等函数、根本初等函数:我们最常用的有五种根本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。下面我们用表格来把它们总结一下:函数名称函数的记号函数的图形函数的性质指数函数 a):不管x为何值,y总为正数; b):当x=0时,y=1.对数函数 a):其图形总位于y轴右侧,并过(1,0)点 b):当a1时,在区间(0,1)的值为负;在区间(-,+)的值为正;在定义域内单调增.幂函数a为随意实数这里只画出部分函数图形的一部分。 令a=m/n a):当m为偶数n为奇数时,y是偶函数; b):当m,n都是奇数时,y是奇函数; c):当m奇n偶时,y在(-,0)无意义.三角函数(正弦函数) 这里只写出了正弦函数 a):正弦函数是以2为周期的周期函数 b):正弦函数是奇函数且反三角函数(反正弦函数)这里只写出了反正弦函数 a):由于此函数为多值函数,因此我们此函数值限制在-/2,/2上,并称其为反正弦函数的主值.、初等函数:由根本初等函数及常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.5、双曲函数及反双曲函数(补充)、双曲函数:在应用中我们常常遇到的双曲函数是:(用表格来描绘)函数的名称函数的表达式函数的图形函数的性质双曲正弦a):其定义域为:(-,+);b):是奇函数;c):在定义域内是单调增双曲余弦a):其定义域为:(-,+);b):是偶函数;c):其图像过点(0,1);双曲正切a):其定义域为:(-,+);b):是奇函数;c):其图形夹在程度直线y=1及y=-1之间;在定域内单调增;课后作业及小结:1、学习了集合概念及函数概念2、驾驭复合函数及反函数计算方法。作业:P9.1,7,8第二节:数列的极限1、引入、数列:若依据肯定的法则,有第一个数a1,第二个数a2,依次排列下去,使得任何一个正整数n对应着一个确定的数an,那末,我们称这列有次序的数a1,a2,an,为数列.数列中的每一个数叫做数列的项。第n项an叫做数列的一般项或通项.注:我们也可以把数列an看作自变量为正整数n的函数,即:an=,它的定义域是全体正整数 、极限:极限的概念是务实际问题的准确解答而产生的。例:我们可通过作圆的内接正多边形,近似求出圆的面积。设有一圆,首先作圆内接正六边形,把它的面积记为A1;再作圆的内接正十二边形,其面积记为A2;再作圆的内接正二十四边形,其面积记为A3;依次循下去(一般把内接正6×2n-1边形的面积记为An)可得一系列内接正多边形的面积:A1,A2,A3,An,它们就构成一列有序数列。我们可以发觉,当内接正多边形的边数无限增加时,An也无限接近某一确定的数值(圆的面积),这个确定的数值在数学上被称为数列A1,A2,A3,An, 当n(读作n趋近于无穷大)的极限。注:上面这个例子就是我国古代数学家刘徽(公元三世纪)的割圆术。 2、数列极限的概念(1)、数列的极限:一般地,对于数列x1,x2,x3,xn,来说,若存在随意给定的正数(不管其多么小),总存在正整数N,使得对于nN时的一切xn不等式都成立,那末就称常数a是数列xn的极限,或者称数xn收敛于a .记作:或注:此定义中的正数只有随意给定,不等式才能表达出xn及a无限接近的意思。且定义中的正整数N及随意给定的正数是有关的,它是随着的给定而选定的。(2)、数列的极限的几何说明:在此我们可能不易理解这个概念,下面我们再给出它的一个几何说明,以使我们能理解它。数列xn极限为a的一个几何说明:将常数a及数列x1,x2,x3,xn在数轴上用它们的对应点表示出来,再在数轴上作点a的邻域即开区间(a-,a+),如下图所示: 因不等式及不等式等价,故当nN时,全部的点xn都落在开区间(a-,a+)内,而只有有限个(至多只有N个)在此区间以外。注:有界的数列不肯定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。例:数列 1,-1,1,-1,(-1)n+1, 是有界的,但它是发散的。3、数列极限的计算(课本例子)课后作业及小结:1、学习了数列极限概念2、驾驭数列极限运算方法。作业:P15.2第三节:函数极限的定义域计算前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取 1内的正整数,若自变量不再限于正整数的依次,而是连续改变的,就成了函数。下面我们来学习函数的极限.函数的极值有两种状况:a):自变量无限增大;b):自变量无限接近某肯定点x0,假如在这时,函数值无限接近于某一常数A,就叫做函数存在极值。我们已知道函数的极值的状况,那么函数的极限如何呢 ?下面我们结合着数列的极限来学习一下函数极限的概念!1、函数的极限(分两种状况)a):自变量趋向无穷大时函数的极限定义:设函数y=f(x),若对于随意给定的正数(不管其多么小),总存在着正数X,使得对于合适不等式 的一切x,所对应的函数值y=f(x)都满意不等式那末常数A就叫做函数y=f(x)当x时的极限,记作:下面我们用表格把函数的极限及数列的极限比照一下:数列的极限的定义函数的极限的定义存在数列an=f(x)及常数A,任给一正数0,总可找到一正整数N,对于nN的全部an都满意则称数列an,当x时收敛于A记:。存在函数y=f(x)及常数A,任给一正数0,总可找到一正数X,对于合适的一切x,都满意,函数y=f(x)当x时的极限为A,记:。从上表我们发觉了什么 ?试思索之b):自变量趋向有限值时函数的极限。我们先来看一个例子.例:函数,当x1时函数值的改变趋势如何?函数在x=1处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把x1时函数值的改变趋势用表列出,如下图:注:在定义中为什么是在去心邻域内呢?这是因为我们只探讨xx0的过程,及x=x0出的状况无关。此定义的核心问题是:对给出的,是否存在正数,使其在去心邻域内的x均满意不等式。有些时候,我们要用此极限的定义来证明函数的极限为 A,其证明方法是怎样的呢? a):先任取0; b):写出不等式; c):解不等式能否得出去心邻域0,若能; d):则对于任给的0,总能找出,当0时,成立,因此2、函数极限的运算规则前面已经学习了数列极限的运算规则,我们知道数列可作为一类特殊的函数,故函数极限的运算规则及数列极限的运算规则相像。、函数极限的运算规则 若已知xx0(或x)时,.则: 推论: 在求函数的极限时,利用上述规则就可把一个困难的函数化为若干个简洁的函数来求极限。例题:求解答:例题:求此题假如像上题那样求解,则会发觉此函数的极限不存在.我们通过视察可以发觉此分式的分子和分母都没有极限,像这种状况怎么办呢?下面我们把它解出来。解答:注:通过此例题我们可以发觉:当分式的分子和分母都没有极限时就不能运用商的极限的运算规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。3、左右极限定义定义:假如x仅从左侧(xx0)趋近x0时,函数f(x)及常量A无限接近,则称A为函数f(x)当时的左极限.记:假如x仅从右侧(xx0)趋近x0时,函数f(x)及常量A无限接近,则称A为函数f(x)当时的右极限.记:注:只有当xx0时,函数f(x)的左、右极限存在且相等,方称f(x)在xx0时有极限课后作业及小结:1、学习了函数数列极限概念2、驾驭函数数列极限运算方法。作业:P23.1,2第四节:极限性质1、数列极限的性质定理1(极限的唯一性) 数列xn不能收敛于两个不同的极限. 证明: 假设同时有及, 且a<b. 按极限的定义, 对于>0, 存在充分大的正整数N, 使当n>N时, 同时有|xn-a|< 及|xn-b|<, 因此同时有 及,这是不行能的. 所以只能有a=b. 数列的有界性: 对于数列xn,假如存在着正数M,使得对一切xn都满意不等式 |xn|£M,则称数列xn是有界的; 假如这样的正数M不存在,就说数列xn是无界的定理2(收敛数列的有界性) 假如数列xn收敛, 那么数列xn肯定有界. 证明: 设数列xn收敛, 且收敛于a, 依据数列极限的定义, 对于e =1, 存在正整数N, 使对于n>N 时的一切xn , 不等式|xn-a|<e =1都成立. 于是当n>N时, |xn|=|(xn -a)+a| £| xn-a|+|a|<1+|a|.取M=max|x 1|, |x 2|, × × ×, |x N |, 1+| a |, 那么数列xn中的一切xn都满意不等式|xn|£ M.这就证明了数列xn是有界的. 定理3(收敛数列的保号性) 假如数列xn收敛于a, 且a>0(或a<0), 那么存在正整数N, 当n>N时, 有xn>0(或xn<0).证 就a>0的情形证明. 由数列极限的定义, 对, $NÎN+, 当n>N时, 有,从而.推论 假如数列xn从某项起有xn³0(或xn£0), 且数列xn收敛于a, 那么a³0(或a£0).证明 就xn³0情形证明. 设数列xn从N1项起, 即当n>N 1时有xn³0. 如今用反证法证明, 或a<0, 则由定理3知, $N 2ÎN+, 当n> N 2时, 有xn<0. 取N=max N 1, N 2 , 当n>N时, 按假定有x n ³0, 按定理3有x n<0, 这引起冲突. 所以必有a ³0. 子数列: 在数列xn中随意抽取无限多项并保持这些项在原数列中的先后次序, 这样得到的一个数列称为原数列xn的子数列.例如, 数列xn: 1, -1, 1, -1, × × ×, (-1)n+1× × ×的一子数列为x2n: -1, -1, -1, × × ×, (-1)2n+1× × × 定理3(收敛数列及其子数列间的关系) 假如数列xn收敛于a, 那么它的任一子数列也收敛, 且极限也是a . 证明: 设数列是数列xn的任一子数列. 因为数列xn收敛于a, 所以"e >0, $NÎN+, 当n>N时, 有|xn-a|<e .取K=N, 则当k>K时, nk³k>K=N. 于是|-a|<e . 这就证明了.2、函数极限的性质定理1(函数极限的唯一性)假如极限存在, 那么这极限唯一. 定理2(函数极限的部分有界性) 假如f(x)®A(x®x0), 那么存在常数M>0和d, 使得当0<|x-x0|<d时, 有|f(x)|£M. 证明 因为f(x)®A(x®x0), 所以对于e =1, $d>0, 当0<|x-x0|<d时, 有|f(x)-A|<e =1, 于是 |f(x)|=|f(x)-A+A|£|f(x)-A|+|A|<1+|A|.这就证明了在x0的去心邻域x| 0<|x-x0|<d 内, f(x)是有界的. 定理3(函数极限的部分保号性) 假如f(x)®A(x®x0), 而且A>0(或A<0), 那么存在常数d>0, 使当0<|x-x0|<d时, 有f(x)>0(或f(x)<0). 定理3¢ 假如f(x)®A(x®x0)(A¹0), 那么存在点x0的某一去心邻域, 在该邻域内, 有. 推论 假如在x0的某一去心邻域内f(x)³0(或f(x)£0), 而且f(x)®A(x®x0), 那么A³0(或A£0). 证明: 设f(x)³0. 假设上述论断不成立, 即设A<0, 那么由定理1就有x0的某一去心邻域, 在该邻域内 f(x)<0, 这及f(x)³0的假定冲突. 所以A³0. 定理4(函数极限及数列极限的关系) 假如当x®x0时f(x)的极限存在, xn为f(x)的定义域内任一收敛于x0的数列, 且满意xn ¹x0(nÎN+), 那么相应的函数值数列f(x n)必收敛, 且. 证明 设f(x)®A(x®x0), 则"e >0, $d >0, 当0<|x-x0|<d 时, 有|f(x)-A|<e . 又因为xn®x0(n®¥), 故对d >0, $NÎN+, 当n>N时, 有|xn-x0|<d . 由假设, xn ¹x0(nÎN+). 故当n>N时, 0<|x n-x 0|<d , 从而|f(x n)-A|<e . 即课后作业及小结:1、学习了极限的相关定理及函数列相关定理作业:P30.8第五节:两个重要的极限1、准则I 假如数列xn 、yn及zn满意下列条件: (1)yn£xn£zn(n=1, 2, 3, × × ×), (2), , 那么数列xn 的极限存在, 且. 证明: 因为, , 以依据数列极限的定义, "e >0, $N 1>0, 当n>N 1时, 有|y n-a|<e ; 又$N 2>0, 当n>N 2时, 有|z n-a|<e . 现取N=maxN 1, N 2, 则当 n>N 时, 有|y n-a|<e , |z n-a|<e 同时成立, 即a-e<yn<a+e , a-e<z n<a+e , 同时成立. 又因yn£xn£zn , 所以当 n>N 时, 有a-e<yn£x n£z n<a+e , 即 |x n-a|<e . 这就证明了. 简要证明: 由条件(2), "e >0, $N >0, 当n>N 时, 有 |y n-a|<e 及|z n-a|<e , 即有 a-e<yn<a+e , a-e<z n<a+e , 由条件(1), 有 a-e<y n£x n£z n<a+e , 即 |x n-a|<e . 这就证明了. 留意: 准则I¢ 假如函数f(x)、g(x)及h(x)满意下列条件: (1) g(x)£f(x)£h(x); (2) lim g(x)=A, lim h(x)=A; 那么lim f(x)存在, 且lim f(x)=A. 注 假如上述极限过程是x®x0, 要求函数在x0的某一去心邻域内有定义, 上述极限过程是x®¥, 要求函数当|x|>M时有定义, 准则I 及准则I¢ 称为夹逼准则. 2、第一重要极限下面依据准则I¢证明第一个重要极限: . OCADB1x 证明 首先留意到, 函数对于一切x¹0都有定义. 参看附图: 图中的圆为单位圆, BCOA, DAOA. 圆心角ÐAOB=x (0<x<). 明显 sin x=CB, x=, tan x=AD. 因为 SDAOB<S扇形AOB<SDAOD , 所以sin x<x<tan x, 即 sin x<x<tan x. 不等号各边都除以sin x, 就有或 . 留意此不等式当-<x<0时也成立. 而, 依据准则I¢, . 简要证明: 参看附图, 设圆心角ÐAOB=x (). 明显 BC< AB <AD, 因此 sin x< x < tan x, 从而 (此不等式当x<0时也成立). 因为, 依据准则I¢, . 应留意的问题: 在极限中, 只要a(x)是无穷小, 就有.这是因为, 令u=a(x), 则u ®0, 于是., (a(x)®0). 例1. 求. 解: . 例2. 求. 解: =3、准则II 单调有界数列必有极限. 假如数列x n满意条件x 1£x 2£x 3£ × × × £x n£x n+1£ × × ×,就称数列x n是单调增加的; 假如数列x n满意条件x 1³x 2³x 3³ × × × ³x n³x n+1³ × × ×,就称数列x n是单调削减的. 单调增加和单调削减数列统称为单调数列. 在第三节中曾证明: 收敛的数列肯定有界. 但那时也曾指出: 有界的数列不肯定收敛. 如今准则II说明: 假如数列不仅有界, 并且是单调的, 那么这数列的极限必定存在, 也就是这数列肯定收敛. 准则II的几何说明: 单调增加数列的点只可能向右一个方向挪动, 或者无限向右挪动, 或者无限趋近于某肯定点A, 而对有界数列只可能后者状况发生. 4、第二重要极限 依据准则II, 可以证明极限存在. 设, 现证明数列xn是单调有界的. 按牛顿二项公式, 有比拟x n , x n+1的绽开式, 可以看出除前两项外, x n的每一项都小于x n+1的对应项, 并且x n+1还多了最终一项, 其值大于0, 因此 x n < x n+1 , 这就是说数列xn是单调有界的.这个数列同时还是有界的. 因为xn的绽开式中各项括号内的数用较大的数1代替, 得依据准则II, 数列xn必有极限. 这个极限我们用e 来表示. 即 我们还可以证明. e是个无理数, 它的值是e=2. 7045× × ×. 指数函数y=e x 以及对数函数y=ln x 中的底e 就是这个常数. 在极限中, 只要a(x)是无穷小, 就有. 这是因为, 令, 则u ®¥, 于是. , (a(x)®0). 例3. 求. 解: 令t=-x, 则x ®¥时, t ®¥. 于是或 .课后作业及小结:1、学习了两个重要极限2、理解单调有界准则3、综合运用夹逼准则作业:P38.1,2,3第六节:无穷小及无穷大1、无穷小 假如函数f(x)当x®x0(或x®¥)时的极限为零, 那么称函数f(x)为当x®x0(或x®¥)时的无穷小. 特殊地, 以零为极限的数列xn称为n®¥时的无穷小. 例如, 因为, 所以函数为当x®¥时的无穷小. 因为, 所以函数为x-1当x®1时的无穷小. 因为, 所以数列为当n®¥时的无穷小.探讨: 很小很小的数是否是无穷小?0是否为无穷小? 提示: 无穷小是这样的函数, 在x®x0(或x®¥)的过程中, 极限为零. 很小很小的数只要它不是零, 作为常数函数在自变量的任何改变过程中, 其极限就是这个常数本身, 不会为零. 无穷小及函数极限的关系: 定理1 在自变量的同一改变过程x®x0(或x®¥)中, 函数f(x)具有极限A的充分必要条件是f(x)=A+a, 其中a是无穷小. 证明: 设, "e >0 , $ d >0, 使当0<|x-x0|<d 时, 有|f(x)-A|<e . 令a=f(x)-A, 则a是x®x0时的无穷小, 且f(x)=A+a . 这就证明了f(x)等于它的极限A及一个无穷小a之和. 反之, 设f(x)=A+a , 其中A 是常数, a是x®x0时的无穷小, 于是|f(x)-A|=|a|. 因a是x®x0时的无穷小, "e >0 , $ d >0, 使当0<|x-x0|<d , 有|a|<e 或|f(x)-A|<e 这就证明了A 是f(x) 当 x®x0时的极限. 简要证明: 令a=f(x)-A, 则|f(x)-A|=|a|. 假如"e >0 , $ d >0, 使当0<|x-x0|<d , 有f(x)-A|<e , 就有|a|<e ; 反之假如"e >0 , $ d >0, 使当0<|x-x0|<d , 有|a|<e , 就有f(x)-A|<e . 这就证明了假如A 是f(x) 当 x®x0时的极限, 则a是x®x0时的无穷小; 假如a是x®x0时的无穷小, 则A 是f(x) 当 x®x0时的极限. 类似地可证明x®¥时的情形. 例如, 因为, 而, 所以.2、无穷大 假如当x®x0(或x®¥)时, 对应的函数值的肯定值|f(x)|无限增大, 就称函数 f(x)为当x®x0(或x®¥)时的无穷大. 记为 (或). 应留意的问题: 当x®x0(或x®¥)时为无穷大的函数f(x), 按函数极限定义来说, 极限是不存在的. 但为了便于叙述函数的这一性态, 我们也说“函数的极限是无穷大”, 并记作 (或).探讨: 无穷大的准确定义如何叙述?很大很大的数是否是无穷大? 提示: Û"M>0, $d >0, 当0<|x-|<d 时, 有|f(x)|>M. 正无穷大及负无穷大: 例2 证明. 证 因为"M>0, $, 当0<|x-1|<d 时, 有所以. 提示: 要使, 只要. 铅直渐近线: 假如, 则称直线是函数y=f(x)的图形的铅直渐近线. 例如, 直线x=1是函数的图形的铅直渐近线. 3、无穷小及无穷大的关系定理 (无穷大及无穷小之间的关系) 在自变量的同一改变过程中, 假如f(x)为无穷大, 则为无穷小; 反之, 假如f(x)为无穷小, 且f(x)¹0, 则为无穷大.证明: 假如, 且f(x)¹0, 那么对于, $d >0, 当0<|x-|<d 时, 有, 由于当0<|x-|<d 时, f(x)¹0, 从而 所以为x®x0时的无穷大. 假如, 那么对于, $d >0,当0<|x-|<d 时, 有, 即, 所以为x®x时的无穷小.课后作业及小结:1、学习了无穷大及无穷小的概念2、驾驭无穷大及无穷小之间的关系作业:P45.4,5第七节:函数的连续性及其性质在自然界中有很多现象,如气温的改变,植物的生长等都是连续地改变着的.这种现象在函数关系上的反映,就是函数的连续性1、连续的概念在定义函数的连续性之前我们先来学习一个概念增量设变量x从它的一个初值x1变到终值x2,终值及初值的差x2-x1就叫做变量x的增量,记为:x即:x=x2-x1 增量x可正可负.我们再来看一个例子:函数y=f(x)在点x0的邻域内有定义,当自变量x在领域内从x0变到x0+x时,函数y相应地从f(x0)变到,其对应的增量为:这个关系式的几何说明如下图:如今我们可对连续性的概念这样描绘:假如当x趋向于零时,函数y对应的增量y也趋向于零,即:,那末就称函数y=f(x)在点x0处连续。函数连续性的定义:设函数y=f(x)在点x0的某个邻域内有定义,假如有称函数y=f(x)在点x0处连续,且称x0为函数的y=f(x)的连续点.下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续的概念:设函数y=f(x)在区间(a,b内有定义,假如左极限存在且等于f(b),即:= f(b),那末我们就称函数f(x)在点b左连续.设函数f(x)在区间a,b)内有定义,假如右极限存在且等于f(a),即:= f(a),那末我们就称函数f(x)在点a右连续.一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在a点右连续,b点左连续,则在闭区间a,b连续,假如在整个定义域内连续,则称为连续函数。注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续.注:连续函数图形是一条连续而不连续的曲线。通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?接着我们就来学习这个问题:函数的连续点2、函数的连续点定义:我们把不满意函数连续性的点称之为连续点. 它包括三种情形:a):f(x)在x0无定义;b):f(x)在xx0时无极限;c):f(x)在xx0时有极限但不等于f(x0);下面我们通过例题来学习一下连续点的类型:例1: 正切函数y=tanx在x=/2处没有定义,所以点x=/2是函数y=tanx的连续点,因,我们就称x=/2为函数y=tanx的无穷连续点;例2:函数y=sin(1/x)在点x=0处没有定义;故当x0时,函数值在-1及+1之间变动无限屡次,我们就称点x=0叫做函数y=sin(1/x)的振荡连续点; 例3:函数当x0时,左极限,右极限,从这我们可以看出函数左、右极限虽然都存在,但不相等,故函数在点x=0是不存在极限。我们还可以发觉在点x=0时,函数值产生跳动现象,为此我们把这种连续点称为跳动连续点;我们把上述三种连续点用几何图形表示出来如下:3、连续点的分类我们通常把连续点分成两类:假如x0是函数f(x)的连续点,且其左、右极限都存在,我们把x0称为函数f(x)的第一类连续点;不是第一类连续点的任何连续点,称为第二类连续点.可去连续点若x0是函数f(x)的连续点,但极限存在,那末x0是函数f(x)的第一类连续点。此时函数不连续缘由是:f(x0)不存在或者是存在但f(x0)。我们令,则可使函数f(x)在点x0处连续,故这种连续点x0称为可去连续点。4、初等函数的连续性连续函数的性质函数的和、积、商的连续性我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论:a):有限个在某点连续的函数的和是一个在该点连续的函数;b):有限个在某点连续的函数的乘积是一个在该点连续的函数;c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零);反函数的连续性:若函数f(x)在某区间上单调增(或单调减)且连续,那末它的反函数x=(y)也在对应的区间上单调增(单调减)且连续例:函数y=sinx在闭区间-/2,/2上单调增且连续,故它的反函数y=arcsinx在闭区间-1,1上也是单调增且连续的。复合函数的连续性:设函数u=(x)当xx0时的极限存在且等于a,即:.而函数f(u)在点u=a连续,那末复合函数y=f(x)当xx0时的极限也存在且等于f(a).即:例题:求解答:设函数u=(x)在点x=x0连续,且u0=(x0),而函数y=f(u)在点u=u0连续,那末复合函数y=f(x)在点x=x0也是连续的5、闭区间上初等函数的连续性通过前面我们所学的概念和性质,我们可得出以下结论:根本初等函数在它们的定义域内都是连续的;一切初等函数在其定义域内也都是连续的.闭区间上的连续函数则是在其连续区间的左端点右连续,右端点左连续.对于闭区间上的连续函数有几条重要的性质,下面我们来学习一下:最大值最小值定理:在闭区间上连续的函数肯定有最大值和最小值。(在此不作证明) 例:函数y=sinx在闭区间0,2上连续,则在点x=/2处,它的函数值为1,且大于闭区间0,2上其它各点出的函数值;则在点x=3/2处,它的函数值为-1,且小于闭区间0,2上其它各点出的函数值。介值定理:在闭区间上连续的函数肯定获得介于区间两端点的函数值间的任何值。即:,在、之间,则在a,b间肯定有一个,使