高中物理解题模型详解归纳超好用.doc
高考物理解题模型目 录第一章 运动和力1一、追及、相遇模型1二、先加速后减速模型3三、斜面模型6四、挂件模型10五、弹簧模型动力学17第二章 圆周运动19一、水平方向圆盘模型19二、行星模型21第三章 功和能1一、水平方向弹性碰撞1二、水平方向非弹性碰撞5三、人船模型8四、爆炸反冲模型11第四章 力学综合13一、解题模型:13二、滑轮模型18三、渡河模型21第五章 电路1一、电路动态变化1二、交变电流6第六章 电磁场1一、电磁场中单杆模型1二、电磁流量计模型7三、盘旋加速模型9四、磁偏转模型14第一章 运动和力一、追及、相遇模型模型讲解:1 火车甲正以速度v1向前行驶,司机突然发现前方距甲d处有火车乙正以较小速度v2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a应满足什么条件?解析:设以火车乙为参照物,那么甲相对乙做初速为、加速度为a匀减速运动。假设甲相对乙速度为零时两车不相撞,那么此后就不会相撞。因此,不相撞临界条件是:甲车减速到与乙车车速一样时,甲相对乙位移为d。即:,故不相撞条件为2 甲、乙两物体相距s,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。甲物体在前,初速度为v1,加速度大小为a1。乙物体在后,初速度为v2,加速度大小为a2且知v1<v2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距最小距离为多少?解析:假设是,说明甲物体先停顿运动或甲、乙同时停顿运动。在运动过程中,乙速度一直大于甲速度,只有两物体都停顿运动时,才相距最近,可得最近距离为假设是,说明乙物体先停顿运动那么两物体在运动过程中总存在速度相等时刻,此时两物体相距最近,根据,求得在t时间内甲位移乙位移代入表达式求得3 如图1.01所示,声源S和观察者A都沿x轴正方向运动,相对于地面速率分别为和。空气中声音传播速率为,设,空气相对于地面没有流动。(1) 假设声源相继发出两个声信号。时间间隔为,请根据发出这两个声信号从声源传播到观察者过程。确定观察者接收到这两个声信号时间间隔。(2) 请利用1结果,推导此情形下观察者接收到声波频率与声源发出声波频率间关系式。解析:作声源S、观察者A、声信号PP1为首发声信号,P2为再发声信号位移时间图象如图2所示图线斜率即为它们速度那么有:图2两式相减可得:解得2设声源发出声波振动周期为T,这样,由以上结论,观察者接收到声波振动周期为由此可得,观察者接收到声波频率与声源发出声波频率间关系为4 2匀减速运动,那么两车初始距离L满足什么条件时可以使1两车不相遇;2两车只相遇一次;3两车能相遇两次设两车相遇时互不影响各自运动。答案:设两车速度相等经历时间为t,那么甲车恰能追及乙车时,应有其中,解得假设,那么两车等速时也未追及,以后间距会逐渐增大,及两车不相遇。假设,那么两车等速时恰好追及,两车只相遇一次,以后间距会逐渐增大。假设,那么两车等速时,甲车已运动至乙车前面,以后还能再次相遇,即能相遇两次。二、先加速后减速模型模型概述:物体先加速后减速问题是运动学中典型综合问题,也是近几年高考热点,同学在求解这类问题时一定要注意前一过程末速度是下一过程初速度,如能画出速度图象就更明确过程了。模型讲解:1 一小圆盘静止在桌面上,位于一方桌水平桌面中央。桌布一边与桌AB边重合,如图1.02所示。盘与桌布间动摩擦因数为,盘与桌面间动摩擦因数为。现突然以恒定加速度a将桌布抽离桌面,加速度方向是水平且垂直于AB边。假设圆盘最近未从桌面掉下,那么加速度a满足条件是什么?以g表示重力加速度图1.02 解析:根据题意可作出物块速度图象如图2所示。设圆盘质量为m,桌边长为L,在桌布从圆盘下抽出过程中,盘加速度为,有图2桌布抽出后,盘在桌面上做匀减速运动,以表示加速度大小,有设盘刚离开桌布时速度为,移动距离为,离开桌布后在桌面上再运动距离后便停下,由匀变速直线运动规律可得:盘没有从桌面上掉下条件是:设桌布从盘下抽出所经历时间为t,在这段时间内桌布移动距离为x,有:,而,求得:,及联立解得2 一个质量为m=0.2kg物体静止在水平面上,用一水平恒力F作用在物体上10s,然后撤去水平力F,再经20s物体静止,该物体速度图象如图3所示,那么下面说法中正确是 A. 物体通过总位移为150mB. 物体最大动能为20JC. 物体前10s内和后10s内加速度大小之比为2:1D. 物体所受水平恒力和摩擦力大小之比为3:1答案:ACD图3三、斜面模型1 相距为20cm平行金属导轨倾斜放置,如图1.03,导轨所在平面与水平面夹角为,现在导轨上放一质量为330g金属棒ab,它与导轨间动摩擦系数为,整个装置处于磁感应强度B=2T竖直向上匀强磁场中,导轨所接电源电动势为15V,内阻不计,滑动变阻器阻值可按要求进展调节,其他局部电阻不计,取,为保持金属棒ab处于静止状态,求:1ab中通入最大电流强度为多少?2ab中通入最小电流强度为多少? 图1.03 导体棒ab在重力、静摩擦力、弹力、安培力四力作用下平衡,由图2中所示电流方向,可知导体棒所受安培力水平向右。当导体棒所受安培力较大时,导体棒所受静摩擦力沿导轨向下,当导体棒所受安培力较小时,导体棒所受静摩擦力沿导轨向上。1ab中通入最大电流强度时受力分析如图2,此时最大静摩擦力沿斜面向下,建立直角坐标系,由ab平衡可知,x方向:y方向:由以上各式联立解得:2通入最小电流时,ab受力分析如图3所示,此时静摩擦力,方向沿斜面向上,建立直角坐标系,由平衡有:x方向:y方向:联立两式解得:由2 物体置于光滑斜面上,当斜面固定时,物体沿斜面下滑加速度为,斜面对物体弹力为。斜面不固定,且地面也光滑时,物体下滑加速度为,斜面对物体弹力为,那么以下关系正确是:A. B. C. D. 当斜面可动时,对物体来说是相对斜面这个加速参考系在作加速运动,而且物体和参考系运动方向不在同一条直线上,利用常规方法难于判断,但是利用矢量三角形法那么能轻松获解。如图4所示,由于重力大小和方向是确定不变,斜面弹力方向也是惟一,由共点力合成三角形法那么,斜面固定时,加速度方向沿斜面向下,作出矢量图如实线所示,当斜面也运动时,物体并不沿平行于斜面方向运动,相对于地面实际运动方向如虚线所示。所以正确选项为B。3 带负电小物体在倾角为绝缘斜面上,整个斜面处于范围足够大、方向水平向右匀强电场中,如图1.04所示。物体A质量为m,电量为-q,与斜面间动摩擦因素为,它在电场中受到电场力大小等于重力一半。物体A在斜面上由静止开场下滑,经时间t后突然在斜面区域加上范围足够大匀强磁场,磁场方向与电场强度方向垂直,磁感应强度大小为B,此后物体A沿斜面继续下滑距离L后离开斜面。1物体A在斜面上运动情况?说明理由。2物体A在斜面上运动过程中有多少能量转化为内能?结果用字母表示图1.04 1物体A在斜面上受重力、电场力、支持力和滑动摩擦力作用,<1>小物体A在恒力作用下,先在斜面上做初速度为零匀加速直线运动;<2>加上匀强磁场后,还受方向垂直斜面向上洛伦兹力作用,方可使A离开斜面,故磁感应强度方向应垂直纸面向里。随着速度增加,洛伦兹力增大,斜面支持力减小,滑动摩擦力减小,物体继续做加速度增大加速运动,直到斜面支持力变为零,此后小物体A将离开地面。2加磁场之前,物体A做匀加速运动,据牛顿运动定律有:解出A沿斜面运动距离为:加上磁场后,受到洛伦兹力随速度增大,支持力减小,直到时,物体A将离开斜面,有:物体A在斜面上运动全过程中,重力和电场力做正功,滑动摩擦力做负功,洛伦兹力不做功,根据动能定理有:物体A克制摩擦力做功,机械能转化为内能: 4 如图1.05所示,在水平地面上有一辆运动平板小车,车上固定一个盛水杯子,杯子直径为R。当小车作匀加速运动时,水面呈如下图状态,左右液面高度差为h,那么小车加速度方向指向如何?加速度大小为多少?图1.05 我们由图可以看出物体运动情况,根据杯中水形状,可以构建这样一个模型,一个物块放在光滑斜面上倾角为,重力和斜面支持力合力提供物块沿水平方向上加速度,其加速度为:。我们取杯中水面上一滴水为研究对象,水滴受力情况如同斜面上物块。由题意可得,取杯中水面上一滴水为研究对象,它相对静止在“斜面上,可以得出其加速度为,而,得,方向水平向右。5 如图1.06所示,质量为M木板放在倾角为光滑斜面上,质量为m人在木板上跑,假设脚与板接触处不打滑。1要保持木板相对斜面静止,人应以多大加速度朝什么方向跑动?2要保持人相对于斜面位置不变,人在原地跑而使木板以多大加速度朝什么方向运动?图1.06 答案:1要保持木板相对斜面静止,木板要受到沿斜面向上摩擦力与木板下滑力平衡,即,根据作用力与反作用力人受到木板对他沿斜面向下摩擦力,所以人受到合力为:方向沿斜面向下。2要保持人相对于斜面位置不变,对人有,F为人受到摩擦力且沿斜面向上,根据作用力与反作用力等值反向特点判断木板受到沿斜面向下摩擦力,大小为所以木板受到合力为:方向沿斜面向下。四、挂件模型1 图1.07中重物质量为m,轻细线AO和BOA、B端是固定。平衡时AO是水平,BO与水平面夹角为。AO拉力F1和BO拉力F2大小是 A. B. C. D. 图1.07 解析:以“结点O为研究对象,沿水平、竖直方向建立坐标系,在水平方向有竖直方向有联立求解得BD正确。2 物体A质量为,用两根轻绳B、C连接到竖直墙上,在物体A上加一恒力F,假设图1.08中力F、轻绳AB与水平线夹角均为,要使两绳都能绷直,求恒力F大小。图1.08 解析:要使两绳都能绷直,必须,再利用正交分解法作数学讨论。作出A受力分析图3,由正交分解法平衡条件:图3解得两绳都绷直,必须由以上解得F有最大值,解得F有最小值,所以F取值为。3 如图1.09所示,AB、AC为不可伸长轻绳,小球质量为m=0.4kg。当小车静止时,AC水平,AB与竖直方向夹角为=37°,试求小车分别以以下加速度向右匀加速运动时,两绳上张力FAC、FAB分别为多少。取g=10m/s2。1;2。图1.09 解析:设绳AC水平且拉力刚好为零时,临界加速度为根据牛顿第二定律联立两式并代入数据得当,此时AC绳伸直且有拉力。根据牛顿第二定律;,联立两式并代入数据得当,此时AC绳不能伸直,。AB绳与竖直方向夹角,据牛顿第二定律,。联立两式并代入数据得。4 两个一样小球A和B,质量均为m,用长度一样两根细线把A、B两球悬挂在水平天花板上同一点O,并用长度一样细线连接A、B两小球,然后用一水平方向力F作用在小球A上,此时三根细线均处于直线状态,且OB细线恰好处于竖直方向,如图1所示,如果不考虑小球大小,两球均处于静止状态,那么力F大小为 A. 0B. mgC. D. 图1.10 答案:C5 如图1.11甲所示,一根轻绳上端固定在O点,下端拴一个重为G钢球A,球处于静止状态。现对球施加一个方向向右外力F,使球缓慢偏移,在移动中每一刻,都可以认为球处于平衡状态,如果外力F方向始终水平,最大值为2G,试求:1轻绳张力FT大小取值范围;2在乙图中画出轻绳张力与cos关系图象。图1.11 答案:1当水平拉力F=0时,轻绳处于竖直位置时,绳子张力最小当水平拉力F=2G时,绳子张力最大:因此轻绳张力范围是:2设在某位置球处于平衡状态,由平衡条件得所以即,得图象如图7。图7 6 如图1.12所示,斜面与水平面间夹角,物体A和B质量分别为、。两者之间用质量可以不计细绳相连。求:1如A和B对斜面动摩擦因数分别为,时,两物体加速度各为多大?绳张力为多少?2如果把A和B位置互换,两个物体加速度及绳张力各是多少?3如果斜面为光滑时,那么两个物体加速度及绳张力又各是多少?图1.12 解析:1设绳子张力为,物体A和B沿斜面下滑加速度分别为和,根据牛顿第二定律:对A有对B有设,即假设绳子没有张力,联立求解得,因,故说明物体B运动比物体A运动快,绳松弛,所以假设成立。故有因而实际不符,那么A静止。2如B与A互换那么,即B物运动得比A物快,所以A、B之间有拉力且共速,用整体法代入数据求出,用隔离法对B:代入数据求出3如斜面光滑摩擦不计,那么A和B沿斜面加速度均为两物间无作用力。7 如图1.13所示,固定在小车上支架斜杆与竖直杆夹角为、在斜杆下端固定有质量为m小球,以下关于杆对球作用力F判断中,正确是 A. 小车静止时,方向沿杆向上B. 小车静止时,方向垂直杆向上C. 小车向右以加速度a运动时,一定有D. 小车向左以加速度a运动时,方向 斜向左上方,与竖直方向夹角为解析:小车静止时,由物体平衡条件知杆对球作用力方向竖直向上,且大小等于球重力mg。小车向右以加速度a运动,设小球受杆作用力方向与竖直方向夹角为,如图4所示,根据牛顿第二定律有:,两式相除得:。图4只有当球加速度且向右时,杆对球作用力才沿杆方向,此时才有。小车向左以加速度a运动,根据牛顿第二定律知小球所受重力mg和杆对球作用力F合力大小为ma,方向水平向左。根据力合成知,方向斜向左上方,与竖直方向夹角为:8 如图1.14所示,在动力小车上固定一直角硬杆ABC,分别系在水平直杆AB两端轻弹簧和细线将小球P悬吊起来。轻弹簧劲度系数为k,小球P质量为m,当小车沿水平地面以加速度a向右运动而到达稳定状态时,轻弹簧保持竖直,而细线与杆竖直局部夹角为,试求此时弹簧形变量。图1.14 答案:,讨论:假设那么弹簧伸长假设那么弹簧伸长假设那么弹簧压缩五、弹簧模型动力学1 如图1.15所示,四个完全一样弹簧都处于水平位置,它们右端受到大小皆为F拉力作用,而左端情况各不一样:中弹簧左端固定在墙上。中弹簧左端受大小也为F拉力作用。中弹簧左端拴一小物块,物块在光滑桌面上滑动。中弹簧左端拴一小物块,物块在有摩擦桌面上滑动。假设认为弹簧质量都为零,以l1、l2、l3、l4依次表示四个弹簧伸长量,那么有 图1.15 A. B. C. D. 解析:当弹簧处于静止或匀速运动时,弹簧两端受力大小相等,产生弹力也相等,用其中任意一端产生弹力代入胡克定律即可求形变。当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a为多少,仍然可以得到弹簧两端受力大小相等。由于弹簧弹力与施加在弹簧上外力F是作用力与反作用关系,因此,弹簧弹力也处处相等,与静止情况没有区别。在题目所述四种情况中,由于弹簧右端受到大小皆为F拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生弹力大小皆为F,又由四个弹簧完全一样,根据胡克定律,它们伸长量皆相等,所以正确选项为D。2 用如图1.16所示装置可以测量汽车在水平路面上做匀加速直线运动加速度。该装置是在矩形箱子前、后壁上各安装一个由力敏电阻组成压力传感器。用两根一样轻弹簧夹着一个质量为滑块,滑块可无摩擦滑动,两弹簧另一端分别压在传感器a、b上,其压力大小可直接从传感器液晶显示屏上读出。现将装置沿运动方向固定在汽车上,传感器b在前,传感器a在后,汽车静止时,传感器a、b示数均为10N取1假设传感器a示数为14N、b示数为,求此时汽车加速度大小和方向。2当汽车以怎样加速度运动时,传感器a示数为零。图1.16 解析:1,a1方向向右或向前。2根据题意可知,当左侧弹簧弹力时,右侧弹簧弹力代入数据得,方向向左或向后3 如图1.17所示,一根轻弹簧上端固定在O点,下端系一个钢球P,球处于静止状态。现对球施加一个方向向右外力F,吏球缓慢偏移。假设外力F方向始终水平,移动中弹簧与竖直方向夹角且弹簧伸长量不超过弹性限度,那么下面给出弹簧伸长量x与函数关系图象中,最接近是 图1.17 答案:D第二章 圆周运动解题模型:一、水平方向圆盘模型1 如图1.01所示,水平转盘上放有质量为m物块,当物块到转轴距离为r时,连接物块和转轴绳刚好被拉直绳上张力为零。物体和转盘间最大静摩擦力是其正压力倍,求:1当转盘角速度时,细绳拉力。2当转盘角速度时,细绳拉力。 图2.01 解析:设转动过程中物体与盘间恰好到达最大静摩擦力时转动角速度为,那么,解得。1因为,所以物体所需向心力小于物体与盘间最大摩擦力,那么物与盘间还未到最大静摩擦力,细绳拉力仍为0,即。2因为,所以物体所需向心力大于物与盘间最大静摩擦力,那么细绳将对物体施加拉力,由牛顿第二定律得:,解得。2 如图2.02所示,在匀速转动圆盘上,沿直径方向上放置以细线相连A、B两个小物块。A质量为,离轴心,B质量为,离轴心,A、B与盘面间相互作用摩擦力最大值为其重力倍,试求:1当圆盘转动角速度为多少时,细线上开场出现张力?2欲使A、B与盘面间不发生相对滑动,那么圆盘转动最大角速度为多大?图2.02 1当圆盘转动角速度为多少时,细线上开场出现张力?2欲使A、B与盘面间不发生相对滑动,那么圆盘转动最大角速度为多大?解析:1较小时,A、B均由静摩擦力充当向心力,增大,可知,它们受到静摩擦力也增大,而,所以A受到静摩擦力先到达最大值。再增大,AB间绳子开场受到拉力。由,得:2到达后,再增加,B增大向心力靠增加拉力及摩擦力共同来提供,A增大向心力靠增加拉力来提供,由于A增大向心力超过B增加向心力,再增加,B所受摩擦力逐渐减小,直到为零,如再增加,B所受摩擦力就反向,直到达最大静摩擦力。如再增加,就不能维持匀速圆周运动了,A、B就在圆盘上滑动起来。设此时角速度为,绳中张力为,对A、B受力分析:对A有对B有联立解得:3 如图2.03所示,两个一样材料制成靠摩擦传动轮A和轮B水平放置,两轮半径,当主动轮A匀速转动时,在A轮边缘上放置小木块恰能相对静止在A轮边缘上。假设将小木块放在B轮上,欲使木块相对B轮也静止,那么木块距B轮转轴最大距离为 A. B. C. D. 3 答案:C二、行星模型1 氢原子处于基态时,核外电子绕核运动轨道半径,那么氢原子处于量子数1、2、3,核外电子绕核运动速度之比和周期之比为: A. ;B. C. D. 以上答案均不对解析:根据经典理论,氢原子核外电子绕核作匀速率圆周运动时,由库仑力提供向心力。即,从而得线速度为周期为又根据玻尔理论,对应于不同量子数轨道半径与基态时轨道半径r1有下述关系式:。由以上几式可得v通式为:所以电子在第1、2、3不同轨道上运动速度之比为:而周期通式为:所以,电子在第1、2、3不同轨道上运动周期之比为:由此可知,只有选项B是正确。2 卫星做圆周运动,由于大气阻力作用,其轨道高度将逐渐变化由于高度变化很缓慢,变化过程中任一时刻,仍可认为卫星满足匀速圆周运动规律,下述卫星运动一些物理量变化正确是: A. 线速度减小 B. 轨道半径增大 C. 向心加速度增大 D. 周期增大解析:假设轨道半径不变,由于大气阻力使线速度减小,因而需要向心力减小,而提供向心力万有引力不变,故提供向心力大于需要向心力,卫星将做向心运动而使轨道半径减小,由于卫星在变轨后轨道上运动时,满足,故增大而T减小,又,故a增大,那么选项C正确。3 经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们研究,使我们对宇宙中物质存在形式和分布情况有了较深刻认识,双星系统由两个星体组成,其中每个星体线度都远小于两星体之间距离,一般双星系统距离其他星体很远,可以当作孤立系统来处理。现根据对某一双星系统光度学测量确定;该双星系统中每个星体质量都是M,两者相距L,它们正围绕两者连线中点做圆周运动。1试计算该双星系统运动周期;2假设实验中观测到运动周期为,且。为了理解与不同,目前有一种流行理论认为,在宇宙中可能存在一种望远镜观测不到暗物质。作为一种简化模型,我们假定在以这两个星体连线为直径球体内均匀分布这种暗物质。假设不考虑其他暗物质影响,请根据这一模型和上述观测结果确定该星系间这种暗物质密度。答案:1双星均绕它们连线中点做圆周运动,设运动速率为v,得:2根据观测结果,星体运动周期:这种差异是由双星系统类似一个球内均匀分布暗物质引起,均匀分布双星系统内暗物质对双星系统作用,与一个质点质点质量等于球内暗物质总质量且位于中点O处作用一样。考虑暗物质作用后双星速度即为观察到速度,那么有:因为周长一定时,周期和速度成反比,得:有以上各式得设所求暗物质密度为,那么有第三章 功和能一、水平方向弹性碰撞1 在光滑水平地面上有两个一样弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰。碰撞过程中总机械能守恒,两球压缩最紧时弹性势能为EP,那么碰前A球速度等于 A. B. C. D. 解析:设碰前A球速度为v0,两球压缩最紧时速度为v,根据动量守恒定律得出,由能量守恒定律得,联立解得,所以正确选项为C。2 在原子核物理中,研究核子与核子关联最有效途径是“双电荷交换反响。这类反响前半局部过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑水平直轨道上处于静止状态,在它们左边有一垂直于轨道固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图3.01所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运动过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定锁定及解除锁定均无机械能损失,A、B、C三球质量均为m。图3.01 1求弹簧长度刚被锁定后A球速度。2求在A球离开挡板P之后运动过程中,弹簧最大弹性势能。解析:1设C球与B球粘结成D时,D速度为v1,由动量守恒得当弹簧压至最短时,D与A速度相等,设此速度为v2,由动量守恒得,由以上两式求得A速度。2设弹簧长度被锁定后,贮存在弹簧中势能为EP,由能量守恒,有撞击P后,A与D动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D动能,设D速度为v3,那么有以后弹簧伸长,A球离开挡板P,并获得速度,当A、D速度相等时,弹簧伸至最长,设此时速度为v4,由动量守恒得当弹簧伸到最长时,其势能最大,设此势能为EP',由能量守恒,有解以上各式得。3 图3.02中,轻弹簧一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态。另一质量与B一样滑块A,从导轨上P点以某一初速度向B滑行,当A滑过距离l1时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。最后A恰好返回出发点P并停顿,滑块A和B与导轨滑动摩擦因数都为,运动过程中弹簧最大形变量为l2,重力加速度为g,求A从P出发初速度v0。图3.02 解析:令A、B质量皆为m,A刚接触B时速度为v1碰前由功能关系,有A、B碰撞过程中动量守恒,令碰后A、B共同运动速度为v2有碰后A、B先一起向左运动,接着A、B一起被弹回,在弹簧恢复到原长时,设A、B共同速度为v3,在这一过程中,弹簧势能始末状态都为零,利用功能关系,有此后A、B开场别离,A单独向右滑到P点停下,由功能关系有由以上各式,解得4 用轻弹簧相连质量均为2kgA、B两物块都以速度在光滑水平地面上运动,弹簧处于原长,质量为4kg物体C静止在前方,如图3.03所示,B与C碰撞后二者粘在一起运动。求在以后运动中,1当弹簧弹性势能最大时物体A速度多大?2弹性势能最大值是多大?解析:1当A、B、C三者速度相等时弹簧弹性势能最大,由于A、B、C三者组成系统动量守恒,有解得:2B、C碰撞时B、C组成系统动量守恒,设碰后瞬间B、C两者速度为,那么设物块A速度为vA时弹簧弹性势能最大为EP,根据能量守恒3由系统动量守恒得设A速度方向向左,那么那么作用后A、B、C动能之和实际上系统机械能根据能量守恒定律,是不可能。故A不可能向左运动。5 如图3.04所示,在光滑水平长直轨道上,A、B两小球之间有一处于原长轻质弹簧,弹簧右端与B球连接,左端与A球接触但不粘连,开场时A、B均静止。在A球左边有一质量为小球C以初速度向右运动,与A球碰撞后粘连在一起,成为一个复合球D,碰撞时间极短,接着逐渐压缩弹簧并使B球运动,经过一段时间后,D球与弹簧别离弹簧始终处于弹性限度内。图3.04 1上述过程中,弹簧最大弹性势能是多少?2当弹簧恢复原长时B球速度是多大?3假设开场时在B球右侧某位置固定一块挡板图中未画出,在D球与弹簧别离前使B球与挡板发生碰撞,并在碰后立即将挡板撤走,设B球与挡板碰撞时间极短,碰后B球速度大小不变,但方向相反,试求出此后弹簧弹性势能最大值范围。答案:1设C与A相碰后速度为v1,三个球共同速度为v2时,弹簧弹性势能最大,由动量守恒,能量守恒有:2设弹簧恢复原长时,D球速度为,B球速度为那么有3设B球与挡板相碰前瞬间D、B两球速度与挡板碰后弹性势能最大,D、B两球速度相等,设为当时,最大时,最小,所以二、水平方向非弹性碰撞1 如图3.05所示,木块与水平弹簧相连放在光滑水平面上,子弹沿水平方向射入木块后留在木块内时间极短,然后将弹簧压缩到最短。关于子弹和木块组成系统,以下说法真确是A 从子弹开场射入到弹簧压缩到最短过程中系统动量守恒B 子弹射入木块过程中,系统动量守恒C 子弹射入木块过程中,系统动量不守恒D 木块压缩弹簧过程中,系统动量守恒图3.05 答案:B2 如图3.06所示,一个长为L、质量为M长方形木块,静止在光滑水平面上,一个质量为m物块可视为质点,以水平初速度从木块左端滑向右端,设物块与木块间动摩擦因数为,当物块与木块到达相对静止时,物块仍在长木块上,求系统机械能转化成内能量Q。图3.06 解析:可先根据动量守恒定律求出m和M共同速度,再根据动能定理或能量守恒求出转化为内能量Q。对物块,滑动摩擦力做负功,由动能定理得:即对物块做负功,使物块动能减少。对木块,滑动摩擦力对木块做正功,由动能定理得,即对木块做正功,使木块动能增加,系统减少机械能为:此题中,物块与木块相对静止时,那么上式可简化为:又以物块、木块为系统,系统在水平方向不受外力,动量守恒,那么:联立式<2>、<3>得:故系统机械能转化为内能量为:3 如图3.07所示,光滑水平面地面上放着一辆两端有挡板静止小车,车长L1m,一个大小可忽略铁块从车正中央以速度向右沿车滑行。铁块与小车质量均等于m,它们之间动摩擦因数,铁块与挡板碰撞过程中机械能不损失,且碰撞时间可以忽略不计,取,求从铁快由车正中央出发到两者相对静止需经历时间。图3.07 答案:4 如图3.08所示,电容器固定在一个绝缘座上,绝缘座放在光滑水平面上,平行板电容器板间距离为d,右极板上有一小孔,通过孔有一左端固定在电容器左极板上水平绝缘光滑细杆,电容器极板以及底座、绝缘杆总质量为M,给电容器充电后,有一质量为m带正电小环恰套在杆上以某一初速度v0对准小孔向左运动,并从小孔进入电容器,设带电环不影响电容器板间电场分布。带电环进入电容器后距左板最小距离为0.5d,试求: 1带电环与左极板相距最近时速度v;2此过程中电容器移动距离s。3此过程中能量如何变化?答案:1带电环进入电容器后在电场力作用下做初速度为v0匀减速直线运动,而电容器那么在电场力作用下做匀加速直线运动,当它们速度相等时,带电环与电容器左极板相距最近,由系统动量守恒定律可得:动量观点:力与运动观点:设电场力为F2能量观点在第1问根底上:对m:对M:所以运动学观点:对M:,对m:,解得:带电环与电容器速度图像如图5所示。由三角形面积可得:图5解得:3在此过程,系统中,带电小环动能减少,电势能增加,同时电容器等动能增加,系统中减少动能全部转化为电势能。三、人船模型1 如图3.09所示,长为L、质量为M小船停在静水中,质量为m人从静止开场从船头走到船尾,不计水阻力,求船和人对地面位移各为多少?图3.09 解析:以人和船组成系统为研究对象,在人由船头走到船尾过程中,系统在水平方向不受外力作用,所以整个系统在水平方向动量守恒。当人起步加速前进时,船同时向后做加速运动;人匀速运动,那么船匀速运动;当人停下来时,船也停下来。设某时刻人对地速度为v,船对地速度为v',取人行进方向为正方向,根据动量守恒定律有:,即因为人由船头走到船尾过程中,每一时刻都满足动量守恒定律,所以每一时刻人速度与船速度之比,都与它们质量之比成反比。因此人由船头走到船尾过程中,人平均速度v与船平均速度v也与它们质量成反比,即,而人位移,船位移,所以船位移与人位移也与它们质量成反比,即<1>式是“人船模型位移与质量关系,此式适用条件:原来处于静止状态系统,在系统发生相对运动过程中,某一个方向动量守恒。由图1可以看出:由<1><2>两式解得2 如图3.10所示,质量为M小车,上面站着一个质量为m人,车以v0速度在光滑水平地面上前进,现在人用相对于小车为u速度水平向后跳出后,车速增加v,那么计算v式子正确是: A. B. C. D. 答案:CD3 如图3.11所示,一排人站在沿x轴水平轨道旁,原点O两侧人序号都记为nn1,2,3,每人只有一个沙袋,x>0一侧沙袋质量为14千克,x<0一侧沙袋质量为10千克。一质量为M48千克小车以某初速度从原点出发向正x方向滑行。不计轨道阻力。当车每经过一人身旁时,此人就把沙袋以水平速度u朝与车速相反方向沿车面扔到车上,u大小等于扔此袋之前瞬间车速大小2n倍n是此人序号数。图3.11 (1) 空车出发后,车上堆积了几个沙袋时车就反向滑行?(2) 车上最终会有几个沙袋?(1)在小车朝正x方向滑行过程中,第(n-1)个沙袋扔到车上后车速为vn-1,第n个沙袋扔到车上后车速为vn,由动量守恒定律有小车反向运动条件是vn-1>0,vn<0,即M-nm>0 M-(n+1)m<0 代入数字,得n应为整数,故n=3,即车上堆积3个沙袋后车就反向滑行.(2)车自反向滑行直到接近x<0一侧第1人所在位置时,车速保持不变,而车质量为M+3m.假设在朝负x方向滑行过程中,第(n-1)个沙袋扔到车上后车速为vn-1,第n个沙袋扔到车上后车速为vn,现取在图中向左方向(负x方向)为速度vn、vn-1正方向,那么由动量守恒定律有车不再向左滑行条件是vn-1>0,vn0即 M+3m-nm>0 M+3m-(n+1)m0 n=8时,车停顿滑行,即在x<0一侧第8个沙袋扔到车上后车就停住.故车上最终共有大小沙袋3+8=11个.四、爆炸反冲模型1 如图3.12所示海岸炮将炮弹水平射出,炮身质量不含炮弹为M,每颗炮弹质量为m,当炮身固定时,炮弹水平射程为s,那么当炮身不固定时,发射同样炮弹,水平射程将是多少?图3.12 解析:两次发射转化为动能化学能E是一样。第一次化学能全部转化为炮弹动能;第二次化学能转化为炮弹和炮身动能,而炮弹和炮身水平动量守恒,由动能和动量关系式知,在动量大小一样情况下,物体动能和质量成反比,炮弹动能,由于平抛射高相等,两次射程比等于抛出时初速度之比,即:,所以。思考:有一辆炮车总质量为M,静止在水平光滑地面上,当把质量为m炮弹沿着与水平面成角发射出去,炮弹对地速度为,求炮车后退速度。提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地水平速度大小为,设炮车后退方向为正方向,那么2 在光滑地面上,有一辆装有平射炮炮车,平射炮固定在炮车上,炮车及炮身质量为M,炮弹质量为m;发射炮弹时,炸药提供应炮身和炮弹总机械能E0是不变。假设要使刚发射后炮弹动能等于E0,即炸药提供能量全部变为炮弹动能,那么在发射前炮车应怎样运动?答案:假设在发射前给炮车一适当初速度v0,就可实现题述要求。在这种情况下,用v表示发射后炮弹速度,V表示发射后炮车速度,由动量守恒可知:由能量关系可知:按题述要求应有由以上各式得:第四章 力学综合一、解题模型:1 如图5.01所示,一路灯距地面高度为h,身高为人以速度v匀速行走。1试证明人头顶影子作匀速运动;2求人影长度随时间变化率。图5.01 解:1设t=0时刻,人位于路灯正下方O处,在时刻t,人