欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    中考压轴题分类专题五《抛物线中的四边形》(6页).doc

    • 资源ID:35593991       资源大小:604.50KB        全文页数:6页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    中考压轴题分类专题五《抛物线中的四边形》(6页).doc

    -中考压轴题分类专题五抛物线中的四边形-第 6 页中考压轴题分类专题五抛物线中的四边形基本题型:一、已知,抛物线,点在抛物线上(或坐标轴上,或抛物线的对称轴上),若四边形为平行四边形,求点坐标。分两大类进行讨论:(1)为边时(2)为对角线时二、已知,抛物线,点在抛物线上(或坐标轴上,或抛物线的对称轴上),若四边形为距形,求点坐标。在四边形为平行四边形的基础上,运用以下两种方法进行讨论:(1)邻边互相垂直(2)对角线相等三、已知,抛物线,点在抛物线上(或坐标轴上,或抛物线的对称轴上),若四边形为菱形,求点坐标。在四边形为平行四边形的基础上,运用以下两种方法进行讨论:(1)邻边相等(2)对角线互相垂直四、已知,抛物线,点在抛物线上(或坐标轴上,或抛物线的对称轴上),若四边形为正方形,求点坐标。在四边形为矩形的基础上,运用以下两种方法进行讨论:(1)邻边相等(2)对角线互相垂直在四边形为菱形的基础上,运用以下两种方法进行讨论:(1)邻边互相垂直(2)对角线相等五、已知,抛物线,点在抛物线上(或坐标轴上,或抛物线的对称轴上),若四边形为梯形,求点坐标。分三大类进行讨论:(1)为底时(2)为腰时(3)为对角线时所需知识点:一、 两点之间距离公式:已知两点,则由勾股定理可得:。二、 圆的方程:点在M上,M中的圆心M为,半径为R。则,得到方程:。P在的图象上,即为M的方程。三、 中点公式:已知两点,则线段PQ的中点M为。四、 任意两点的斜率公式:已知两点,则直线PQ的斜率: 。五、 平面内两直线之间的位置关系:两直线分别为:,。(一)。(二)与相交。特别是。典型例题:例一(08深圳中考题)、如图9,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OBOC ,tanACO(1)求这个二次函数的表达式(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度(4)如图10,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,APG的面积最大?求出此时P点的坐标和APG的最大面积.例二、如图,反比例函数y的图象与二次函数的图象在第一象限内相交于A、B两点,A、B两点的纵坐标分别为1,3,且AB=() 求反比例函数的解析式;() 求二次函数的解析式(3)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式例3、如图,在平面直角坐标系中,抛物线=+经过A(0,4)、B(,0)、 C(,0)三点,且=5(1)求、的值;(4分)(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3分)(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由(3分)(第25题图)AxyBCO 例4、(2009年重庆綦江县)26(11分)如图,已知抛物线经过点,抛物线的顶点为,过作射线过顶点平行于轴的直线交射线于点,在轴正半轴上,连结(1)求该抛物线的解析式;(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长xyMCDPQOAB同步训练:1、如图,抛物线y=ax2+bx+c交坐标轴于点A(1,0)、B(3,0)、C(0,3)。(1)求此抛物线函数解析式及顶点M的坐标。(2)若直线CM与x轴交于点D, E是C关于此抛物线对称轴的对称点,试判断四边形ADCE的形状并说明理由。(3)若P是该抛物线上异于A、B两点的一个动点,连接BP交y轴正半轴于点N,是否存在点P使AOC与BON相似,若存在请直接写出点P的坐标,若不存在请说明理由。xyOABCxyOABCEDMxlQCPAOBHRy2如图,在直角坐标系中,点为函数在第一象限内的图象上的任一点,点的坐标为,直线过且与轴平行,过作轴的平行线分别交轴,于,连结交轴于,直线交轴于(1)求证:点为线段的中点;(2)求证:四边形为平行四边形;平行四边形为菱形;(3)除点外,直线与抛物线有无其它公共点?并说明理由3、(2009年广东广州)如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ABC的面积为。(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。4、(2009年烟台市)如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是(1) 求抛物线对应的函数表达式;(2) 经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;(3) 设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由;OBxyAMC1(第26题图)(4) 当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结论)5、(2009年浙江省湖州市)已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.(1)填空:试用含的代数式分别表示点与的坐标,则; (2)如图,将沿轴翻折,若点的对应点恰好落在抛物线上,与轴交于点,连结,求的值和四边形的面积;(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.第(2)题xyBCODAMNNxyBCOAMN备用图(第24题)6、(2009年河池市)如图12,已知抛物线交轴于A、B两点,交轴于点C,抛物线的对称轴交轴于点E,点B的坐标为(,0)(1)求抛物线的对称轴及点A的坐标;(2)在平面直角坐标系中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;ODBCAE图12(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由7、(江苏省2009年)如图,已知二次函数的图象的顶点为二次函数的图象与轴交于原点及另一点,它的顶点在函数的图象的对称轴上(1)求点与点的坐标;xyO12321A(2)当四边形为菱形时,求函数的关系式8、(2009年柳州)如图11,已知抛物线()与轴的一个交点为,与y轴的负半轴交于点C,顶点为D(1)直接写出抛物线的对称轴,及抛物线与轴的另一个交点A的坐标;(2)以AD为直径的圆经过点C求抛物线的解析式;OxyABCD图11点在抛物线的对称轴上,点在抛物线上,且以四点为顶点的四边形为平行四边形,求点的坐标

    注意事项

    本文(中考压轴题分类专题五《抛物线中的四边形》(6页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开