欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    电子直线加速器的工作原理.pptx

    • 资源ID:35642073       资源大小:3.89MB        全文页数:86页
    • 资源格式: PPTX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    电子直线加速器的工作原理.pptx

    第一节 加速电场及电子能量的获得 带电粒子加速器是用人工方法借助不同形态的电场,将各种不同种类的带电粒子加速到更高能量的电磁装置,常称为“粒子加速器”,简称“加速器”。 电子直线加速器是利用微波电磁场加速电子并且具有直线运动轨道的加速装置。 电子直线加速器的加速方式有两种:行波加速方式和驻波加速方式。第1页/共86页一、行波加速方式 图2-1的模型是电子直线加速最基本的原理。很显然,电子只能在加速缝隙D中得到加速。若平均电场强度为 则通过加速缝所获得的能量为 . 设想加速系统能与电子相同的速度前进运动,电子一直处于加速缝中,则加速能持续。 但是,根据根据狭义相对论,现实中不可能制造这种系统:由于电子很轻,经过几十千电子伏特的加速之后,速度就可与光速相比拟,而一个宏观的系统 是不可能做到与光速相比拟的。aeVDVaEZ/第2页/共86页 圆波导管中可以激励起一种具有纵向分量的电场( ),它可以用来加速电子;其磁场分布如图2-2所示,但是磁场在圆波导管中传播的相速度大于光速;要想利用该电场来同步加速电子,要设法使磁场传播的相速度慢下来。TM01第3页/共86页 如图2-3,在圆波导管中周期性插入带中孔的圆形膜片,依靠膜片的反射作用,使电磁场传播的相速度慢下来,实现对电子的同步加速。这种波导管,人们称其为盘荷波导(disk-loaded waveguide)加速管,取圆形膜片对波导管加载之意。第4页/共86页 由图2-3,在轴线附近,能提供一个沿Z轴直线加速电子的电场,假设性波加速电场的的强度为 ,电子一直处于电场的波峰上,则经过长度为L的加速管之后,电子所获得的能量W为 人们把这种加速原理叫做“行波加速原理”。ZELeEWZ第5页/共86页二、驻波加速方式 如图2-4,时变电场按直线连续加速电子的模型:一系列双圆筒电极之间,分别接上频率相同的电源,如果该频率和双圆筒电极缝隙之间的距离式(2-2)的关系,则电子可以得以持续加速。 式中为v电子运动速度。)22(2/afvD第6页/共86页 上述模型在现实中很难实现。若取D=5cm,v近似为光速,则 电线不能传输这样高频率的电压。 实现上述加速模型只能在一个谐振腔列中完成。 在图2-3所示的加速管左右两端适当位置放置短路板,形成一种电磁振荡的驻波状态,其电场分布如图2-5所示。MHzfa3000第7页/共86页 图2-5加速管结构中所有腔体都谐振在一个频率上相邻腔间的距离为D,腔间电场相位差为 电子在一个腔飞跃的时间为 等于加速管中电磁场振荡的半周期,电子的飞跃时间与加速电场更换方向时间一致,从而能持续加速。这种加速模型被称为驻波加速。180cDt/第8页/共86页 综上所述,医用电子直线加速器是利用微波电磁场的行波加速方式或驻波加速方式。 如图2-6,医用电子直线加速器主要系统:(1)电子由电子枪产生(2)聚焦磁场约束电子束流的横向运动,避免电子横向散开(3)加速管内必须为真空,避免电子与真空中气体碰撞(4)专门微波功率源系统产生电磁场,由微波功率传输系统馈入加速管,来加速电子。如图2-6.第9页/共86页第10页/共86页第二节 行波加速原理-纵向运动及相运动一、行波电场的加速条件 医用行波电子直线加速器的核心是行波加速管,它只所以能加速电子,是因为它不但具有电场的纵向分量,而且它是慢波,能把 模的电磁波的相位传播速度慢倒光速,甚至光速以下。 在盘荷波导中,微波电磁场以波的形式沿轴线方向(Z轴)向前传播,如图2-7所示。01TM第11页/共86页 行波加速原理的核心是电子速度和行波相速之间必须满足同步条件: (2-3) 电子在行波电场作用下,速度不断增加,要求行波电场的传播速度也同步增加,以对电子施加有效的作用。显然,若同步条件遭到破坏,电场就不能对电子施加有效的加速,如果电子落入减速相位,电子还会受到减速。 根据狭义相对论,电子速度V和动能满足下列关系 式中 为电子静止能量0.511MeV,W为电子动能,c为光速,)()(zvzvp)(221002cmWcmcvcm20cve第12页/共86页 根据式(2-4),电子速度约为v=0.170.37c;当加速到12MeV时,电子速度就达到v=0.940.98c ,如前所述,其后能量再电子刚注入直线加速器时,动能约为1040KeV增加,电子速度也不再增加多少了。 图2-8给出了一台国产8MeV医用行波电子直线加速器电子速度和动能沿加速管变化的计算曲线。图中可见,沿加速管,电子的动能基本上是线性增长的,但电子速度很快就很快接近光速了。 由于这一特点,加速能量大于2MeV的电子时,行波电场的速度可以不变,等于光速,即用结构均匀的盘荷波导就可以持续加速电子,从而大大简化了盘荷波导管的设计和加工。在盘荷波导加速管中的轴线附近,行波电场纵向分量E可以表示成EIEzwtkrztzrZ)sin()()(),(00第13页/共86页 上式中, 为场的幅值,为距离z的函数; 为电磁场的角频率; , 表示单位长度上的相移,称为z方向的的相位常数,r,z分别为径向和轴向位置, 为零阶虚变量贝塞尔函数,当在r 0时, 1 . Ez)(0g/2)(0krI)(0krI第14页/共86页 从式(2-5)可见,行波电场的强度和方向都是随时间和轴上位置交变的。在同一时刻,沿加速管轴线不同地方,电场方向有的与加速运动方向一致,有的则相反。电场以波的形式向前传播(图2-9)。图中为导波波长,行波加速就是在行波电场不断向前传播的过程中,行波电场不断给电子以加速力。这时波在前进,电子也在前进。在这动态过程中并不是在任何情况下,电子都能受到电场的加速作用,只有电子落入加速相位,才能受到加速。若电子相对行波场的相位不合适,落入减速相位,电子反而被减速,失去能量。第15页/共86页第16页/共86页 因此在讨论同步加速时,常常引用一个相位图来表达电子在加速过程中,电子相对于行波电场的相位关系(如图2-10)。我们记 范围为加速相位,a= 为加速的波峰, 范围为减速相位。利用(2-5)式,可以求得波速的表达式。 式(2-5) 在r=0的情况下,可以改写成 (2-6) 式中,T为行波电场完成一次震荡所需的时间,常称为周期( )。取波的零点移动速度来计算波速。设t=0时,z=0为计算原点。则这时式(2-6)中电场相位值 ,若这个行波电场经时间 后,场零点移动了 距离,则这时相应电场相位仍应为零( )。即: (2-7)1800900180)22sin()()(0gzTtztzEEZT/2022gzTttz0022gzTt第17页/共86页 而波速 则等于波的零点在单位时间内移动的距离,为 由式(2-7)和(2-8),可求得波速: 由于 所以式(2-9)也常常表示成: (2-10)vptzvpTgvpg2)(zvp第18页/共86页 由式2-10,我们可以改变盘荷波导的尺寸,特别是皱折深度(b-a)可以控制行波电场传播速度 ,使之与电子速度 v(z) 同步,从而实现行波加速。 如图2-11,用海浪和冲浪运动员来形象比喻行波电场和电子。)(zvp第19页/共86页 电子受行波电场加速,不能简单地理解为行波像一节车厢,电子像旅客,火车速度加快了,旅客前进的速度也加快,车厢必定带着旅客一起走,行波和电场不是这种简单的关系,没有什么东西把电子绑在行波的波峰上。 在加速过程中,波在前进,电子也在前进,在这个意义上它们是相互独立的,但它们又是相互联系的,当同步条件得到满足时,场给电子以加速力,电子从场中获得能量,反之,同步加速条件受到破坏,电子落入减速相位,则电子会把自身的能量交换给场。 在同步加速过程中,电子在行波场的作用下速度越来越快,而行波场传播速度按着人们的设计越来越快,当电子速度逐渐接近光速时,波的速度可设计为等于光速,维持电子一直处于波峰附近。在这个意义上,电子好像骑在波峰附近前进,不断获得能量。第20页/共86页二、相运动及纵向运动 同步条件要求 ,是在一般意义上讲的,实际上在行波加速过程中,始终严格保持 是不可能的。即使从电子枪注入到加速管的电子,其初始速度v(0)就很难保证做到和设计加工好的加速管的初始相速度 绝对相等,另一方面从电子枪注入到加速管的电子,器注入时刻是有先后的,不可能注入到同一相位上。此时无论是电子比波快还是电子跟不上波,电子相对于波的相位就存在滑动,我们称之为“滑相”,这种滑相也就被称为相运动。 将相运动控制在允许的范围内,使电子在这相位范围内往返地滑动,并在这往返滑动过程中,基本上处于某一个加速相位(平衡相位 )附近,而受到 ,而不至于单方向滑动,滑入减速相位而丢失。我们把能够实现这种相运动状态称为“存在相运动稳定性”。相运动稳定性问题实质上就是电子纵向运动的稳定性,只有相运动是稳定的,才能对电子进行有效的加速运动。 如果将加速电子的理想加速相位 不选取在波峰 上,而取在波峰前 ,稳定的相振荡,我们称 为平衡相位。)()(zvzvp)()(zvzvpss90s900ss第21页/共86页2-12第22页/共86页 下面利用相位图(2-12)来解释这一自动稳相的现象。定义 为加速相位的波峰,规定 的左面,即 处时间为早; 右面,即 为晚, 值越大,电子相对波的关系越晚。处于平衡相位 上的电子,单位距离能量增益 可表示成: (2-11)。 我们称此电子为同步电子。若有一个电子早于 注入,其相应的相位为 ,则该电子在单位距离上所获得的能量比同步电子少, , 在此瞬间,该电子有比同步电子慢的趋势,电子所处的相位要向晚的方向滑,逐渐滑到 处,尽管在此一瞬间电子所获得的能量与同步电子相同,但是由于此前时段内电子所获得的总能量是小于同步电子的,所以它在那一瞬间的速度仍然比同步电子小,即 ,故电子所处的相位继续向晚的方向滑,由于此时 ,在单位距离上所获得的能量反而大于同步电子,从而在速度上慢慢赶上同步电子。当相位达到某值 时,电子速度终于等于同步电子速度 但由于此相位 ,单位距离上电子所获得的能量比同步电子大,瞬时同步的状态马上被破坏,而出现 ,的情况电子在相位上要赶过波,向早的方向滑动,又滑回到 处,但此时仍然 ,电子继续向前滑,滑到某相位处,又出现 时,电子相位折回,从而存在电子相对于波的相位来回振荡的现象。这种电子相对于波的相位来回振荡的现象称为“相振荡”,电子入射的相位 对平衡相位 的允许偏离值 有一定范围,如果偏离太大,则相运动是不稳定的,允许的偏离值 的大小,与 值选取有关。如果选取的 稍靠近 一些,则允许的 偏离值可以大一些。20000sdZdWszEedZdWsins1szzEEeesinsin1svpv svpv s2vpv svpv vpv sssssssvpv 第23页/共86页 作为极端情况,如果平衡相位 取 则范围 内电子全部都能围绕 作相振荡。然而在这个时候电子能获得能量的增益等于零。因此从提高加速效率来讲,平衡相位不但应在 范围内,而且应靠近波峰 ( ),可是从相振荡范围的角度, 越靠近 ,所允许的范围越小。作为另一种极端情况,若取 ,则稳定的相振荡变为零。 这样就给我们提出了一个问题,如何使注入到加速管的电子大多数能够稳定加速,不至丢掉,而另一方面又同时具有较高的加速效率?s360s202ss22第24页/共86页三、相位会聚任务的提出及聚速器的作用如何使注入到加速管的大多数电子在相位上都能会聚到波峰之前一个较小的相位范围内?为了回答这个问题,首先具体看看从电子枪注入的电子和加速电子的电磁波之间的相位关系。 医用电子直线加速器是脉冲工作的,脉冲工作宽度一般约为 。在这脉冲的时间内微波功率持续通到加速管内,并在加速管中激励起加速电子的行波电场。电子也在这期间内从电子枪持续注入到加速管,如图2-13所示。 s42第25页/共86页2-13第26页/共86页 在这 加速管里的电磁场已经完成了上万次振荡。因此如果让电子枪的电子直接进入加速管的话,电子会均匀分布在每一个行波场的相位上。有一半电子会遇到加速电场,另一半电子会遇到减速电场。如何使均布在 相位范围内的电子多数能集中到波峰之前某一个平衡相位 附近呢?这就提出相位汇聚的问题。为此,要在电子枪和主加速管之间加入一个聚束器或一聚束段,通过聚束器(聚束段)把注入时均匀分布在 之间电子多数能汇聚到加速电场的波峰附近。S42360s180180第27页/共86页四、聚束器中相位汇聚过程、相运动机纵向运动 可以有各种不同形式的聚束器(或聚束段)实现相位汇聚。医用行波电子直线加速器为了结构紧凑,常常把聚束器和主加速管制作在一起,成为主加速管的一部分,称其为“聚束段”。 聚束器的一个重要指标就是俘获系数,它是指在 范 围内注入的电子有多大的一个比例能被行波电场俘获,而加速到最终,获得应有的能量。好的聚束段可以将70%80%的注入电子俘获(称俘获系数为70%80%)。为了提高俘获系数可以把聚束段入口处的平衡相位 选在 ,这只要让 ,及 就可以实现。然后将 从 逐步移向 附近。360s0)0()0(vvp0)0(dvzpds090第28页/共86页 下面介绍一个医用行波直线加速器聚束段设计的实例,在这个聚束段中电场和波速的变化规律为cmzcmcmKVzEz200/6435. 010(2318. 0sin60)2)122 (23.4020acmzcmcmKV /60)(zvp6934.0)5751.1arctan2(2wz)30(10)(1)30(cmzcmcmvvpp23.4030300zcmz第29页/共86页 要获得电子沿行波电子直线加速器管能量增长情况及了解相位汇聚的过程,就必须求解下列纵向方程组: (2-13) (2-14) )(sin)()(zzedzzdWEz)(11)(2)(2020cmZWcmzcdzzdvp第30页/共86页图2-14和图2-15分别为将式(2-12a)、(2-12b)所描述的场分别代入方程组及相位振荡(包括会聚)的情况。从图2-16可以看到不同相位注入的电子的相位汇聚及相振荡的过程。由于相位汇聚,本来连续注入的电子“束团”化了。第31页/共86页2-14 2-15 2-16第32页/共86页第三节 电子在行波电磁场中的横向运动一、行波电磁场对电子横向作用力的分析 如果电子注入到聚束器(段)时,不是正好与加速管轴线重合,而是偏离轴线或者和轴线有一个夹角,甚至具有一个绕轴线旋转的速度时,电子会受到什么作用力,运动情况如何?这时,电子能不能回到轴线附近,顺利地加速到最终,而不会散掉?以下就是要讨论电子在行波电磁场中的横向运动。 研究电子的横向运动,首先要分析行波电磁场对电子的横向作用力。式(2-6)给出了行波电场的的纵向分量 ,行波电场还存在径向分量 ,它会对电子施加径向作用力;在盘荷波导加速管中存在交变电场的同时,还存在交变磁场 ,该磁场和电子通过洛伦兹力相互作用,也会产生径向作用力,相对纵向而言,径向就是横向。式(2-15)、(2-16)、(2-17)分别给出盘荷波导中轴向分量 ,径向分量 和行波磁场的幅向分量 的表达式),(tzrEz),(tzrEr),(tzrBEzErB第33页/共86页)sin()(),(00ztKrtzrIEEz)cos()(1),(120ztKrtzrIEEpr)cos()(1),(120ztKrctzrIEBpp)17_2 ()162 ()152 (第34页/共86页图2-17形象地画出了式(2-15)、(2、16)和2-17所表示的行波电磁场的分布。从图中可以知道I区是电子运动的稳定区,但是行波电场的径向分量是使电子散焦的。172第35页/共86页 图2-18将I区放大,以便分析电子受到的径向力等于 从图2-18可以看到在相振荡稳定的I区,行波电场的径向分量 是指向轴线,所以是负的( ),而电子电荷e也是负的(e0),所以 ,所以是散焦力。这说明行波电场的相位汇聚作用与径向散焦作用是伴随在一起的。径向行波电场的径向作用力幅值可以表示成EFrrEe)182( Er0Er0FrE)(1120KreIEFprE)192(第36页/共86页2-18第37页/共86页 从图2-17、2-18可以看到,在盘荷波导加速管中同时存在的行波磁场还会对运动电子施加横向作用力。其大小可用洛伦兹力来表示 把式(2-17)代入(2-20)中可得其幅值BFevrB)202()(1120KreIEFpeprE)212(第38页/共86页 对比式(2-19)和(2-21),可知行波磁场的横向作用力比行波电场的模的作用力小 倍,而方向是相反的,部分抵消了行波电场的散焦力。两者综合可得,行波电磁场对电子的横向作用力为 当 时, 趋向于零。但是聚束段中, 行波电磁场的横向作用力是散焦的。一般采用螺线管线圈产生的纵向磁场来抵消 散焦效应。 电子束除了受到行波电磁场施加横向散焦力外,还受到空间电荷的作用力。但在医用电子直线加速器中空间电荷作用力和行波电磁场的作用力相比,一般小数十倍,可以不考虑它的影响。 pe)cos()1)(1120ztKrepeprwIEF)222( 1, 1peFrw1, 1peFrw第39页/共86页二、外加螺线管磁场的聚焦作用 为了抵消式(2-22)给出的散焦力,以防止束流因扩散而丢失,最简单的办法是在加速管外套上一个螺线管线圈,让它建立起一个纵向磁场,当电子的轨道存在径向扩散的趋势时,及电子具有径向速度时,上述纵向外加磁场就要对电子施加一个洛伦兹力,使电子速度方向改变,作圆周运动。而外加纵向磁场对电子的轴向运动是没有影响力的。因此电子运动是上述两种运动的合成,一方面沿轴向运动,一方面绕轴做圆周运动,合成的结果是电子沿螺旋线轨迹运动,如图2-19所示的那样,电子将约束在螺旋线轨迹上而不致扩散。第40页/共86页2-19第41页/共86页 图2-20中画出了聚焦线圈产生的磁力线和电子运动的方向。电子运动速度V和聚焦磁场相互作用产生的洛伦兹力是垂直于纸面指向读者。在这个的作用下,电子将作辐向旋转运动,经推导辐向运动速度 等于式中e为电子电荷,为m电子质量,它和电子静止质量 之间,满足关系 ; 为外加磁场轴分量。 具有辐向速度 的电子又与外加磁场的轴向分量 相互作用,产生一个指向轴线的洛伦兹力,即向心力,它等于 式r中为电子离轴线的径向距离。vBvzme2)232(m0201emmBzvBzrmBeFzB222第42页/共86页 电子作旋转运动时,存在一个惯性离心力,它等于 因此,纵向聚焦磁场除了要克服电子作圆周运动的惯性离心力式(2-25)外,还能提供一个径向聚焦力,它等于 因 ,上式可写成 这个径向聚焦力 ,可以克服行波电磁场的径向散焦力 式(2-22)。在医用行波电子直线加速器中,外加聚焦线圈所产生的磁场就是这样起聚焦作用的。rmBeFZB224rmBeFFFZBBr224201emmrezrBmeF)222021(4FrFrw第43页/共86页三、临界聚焦磁场 为了抵消行波电磁场的径向散焦力,至少需要多大的外加聚焦磁场呢?为了使电子不致扩散到盘荷波导膜片孔径以外,必须使得在处,径向聚焦力,等于散焦力。因此利用式(2-22)和(2-27)两者相等,可得即 称为临界磁场,它是为了抵消行波电磁场的径向散焦力所必需的最小外加磁场。把已知量代入,并应用近轴近似,式(2-29)可简化为cos)1)(21 (12/ 10222002)1 ()4peezKapeaIEBmecos11)(4210020epezakaeIEmB第44页/共86页mBWbeppez24210/210cos11577 式中 ,代入一些典型的值,则用式(2-30)可以估算出临界磁场的取值范围。譬如, 则从式(2-30),可求得 。一般外加聚焦磁场约在 以下。cmEe20060, 4 . 0,511. 0,10,/6000eMeVcmcmkVmEmBWbz20/067.0mWb2/1.0第45页/共86页第四节 行波加速管结构-盘荷波导 微波在盘荷波导中传播的速度(相速度)与盘荷波导内径b和金属膜片孔径a之差b-a,膜片孔径,膜片的间距,甚至膜片厚度t等有关,可以调节这些尺寸来控制相速度以满足同步加速的条件。因此一根特定的加速管是针对一定的工作频率来设计加工调整的。当此频率的微波功率馈入该加速管后,在其中所激励起的行波电场其相速度 就会按设计的要求增长,满足 条件。如果馈入盘荷波导加速管的微波工作频率偏离所设计的频率,其传播的相速度会发生变化,影响电子直线加速器的工作。)(zvp)()(zvzvp第46页/共86页一、 相速度与盘荷波导几何尺寸的关系 盘荷波导几何尺寸主要包括波导内径b,膜片孔径a膜片间距D,膜片厚度t如图2-21所示等。 在这些尺寸中膜片厚度t对相速度影响很不灵敏。膜片厚度的选择主要取决于机械强度以及膜片内孔圆弧倒角附近高频电击穿强度。在确定盘荷波导尺寸时,膜片厚度是可选择的参量。对10cm波段的加速管(f=2998MHz,或2856MHz),一般选t=46mm,个别也有选2mm的。 第47页/共86页2-21第48页/共86页 膜片间距D对相速度的影响也不是主要的。然而它对盘荷波导内建立起的行波场强却有较大的影响,如果盘荷波导内膜片太稀,则微波功率在单位距离内消耗相同的功率时,所建立起的场强很低,从而不能满足加速的要求。膜片太密,会增加高频电流流过的表面面积,增加了功率消耗。因此,存在一个最佳的间距范围,最好在一个导波波长内,有34个膜片(即 )。同时膜片间距的选择和盘荷波导加速管的工作模式选择是联系在一起的。所谓工作模式是两个加速腔之间相移。一般选 或 。相移 的工作模式为 模;相移 的称工作模式为 。前者对应的膜片为 ,后者对应为 。43ggD901202/32gD41gD3190120第49页/共86页 膜片孔径的确定主要依赖于盘荷波导中加速场强的要求。要求加速场强越高,则孔径a就应越小。但 过小,则该加速管的色散变得越严重。对频率自动稳定系统提出很高要求, 值一般选择在0.100.13范围内。 为了传播相速一定的波,当a值决定之后,b值就被唯一的确定下来了,盘荷波导的皱折深度b-a是对波速最敏感的尺寸。当b-a越大,即越接近径向传输线波导波长的1/4,则波速越慢。/a/a第50页/共86页 从20世纪40年代中期至今50多年来人们一直发展各种计算方法、计算程序来计算盘荷波导尺寸与频率、波速、场强的关系。从60年代末期至今发展的以变分法、 有限元发、有限积分法为基础的各种程序可以相当精确地计算盘荷波导尺寸,尺寸精度达 ,频率精度达 Hz。 为了让大家对a和b量值之间关系有一个大致的了解,下式给出 时,粗估b值的关系式 若 cm,由上式可粗算出2b=7.8mm。m1010651,4pgD(201383.0)3abcma10, 1.0第51页/共86页二、相速度和微波频率的关系-色散关系 根据给定的微波频率以及一定的相速度要求而设计和加工出来的盘荷波导加速管,是否只能在给定的微波频率下工作呢?不是!在一定微波频率范围内的微波还能在其中传播,存在着一个通频带,只是不同的频率的波在其中传播时,其相速度会不同而已。这是盘荷波导传播系统的一个很重要的特性。这种波速依赖频率的关系成为“色散”关系。盘荷波导不但能传播我们所设计的频率的微波,而且在设计频率附近的一个范围内的微波也能传播,只不过不同的频率的微波有不同的相速度。这可解释为当微波频率发生变化时,主要起慢波作用的波长变短了,这时盘荷波导的皱折深度b-a相对已经变短的微波波长而言,它显得长了。这样它将起着更大的漫波作用,相速度变慢了!反之,微波频率降低,则相速要增加。 图2-22给出一台国产医用行波加速管的相速度与频率依赖曲线-色散曲线,该加速管的设计频率为 预定相速度为 。从图2-22可以看到,当微波频率离开 ,相速度也就偏离开原定的数值。频率增加时,相速度会降低;频率降低时相速度会增加。从图中还可以看到,实际上存在一条通频带,当频率高于某一数值或低于某一数值,波都不能传播。MHzf299801pf0第52页/共86页2-22第53页/共86页 色散特性是盘荷波导最主要的性,从色散特性可以衡量一根加速管的相速度对微波频率的敏感程度。强色散的加速管,当微波频率稍有变化时,其相速度将有很大的变化。影响加速管色散程度的主要参量是盘荷波导孔径 。孔径 减少,则色散程度增加。 越小,色散越厉害。微波频率变化,导致相速度变动,从而会导致电子同步条件破坏,致使电子相对于波滑相。 我们可将图2-22色散曲线画成角频率 和相位常数 之间的关系曲线,称为布里渊图(Brullouin)图,如图2-23.图中纵坐标用 表示( )横坐标用 ( )表示,使用布里渊图方便之处在于 曲线上,每一点与原点的比值就是该点的相速度即 ,而曲线上每一点的斜率就是该点的群速度,即 。 (群速度常用来表示微波能量传输的速度,关于它的概念在本节后面还要介绍)。另外,此漫波系统的通频带宽度,截止频率的位置在图上可以一目了然。图中的横轴实际上表示在一个腔内的相移。在通频带的低端和高端分别对应相移量为零和 ,在通频带中央表示相移为 ,从该图还可以求解模式间隔。 /a/a/af2p2vpddwvg2/第54页/共86页三、 加速场强和微波功率、膜片孔径的关系 盘荷波导加速管中所激励起的加速场强首先取决于微波功率,与直流电路中电压和电功率的关系相类似,场强和微功率的平方根成正比;其次加速场强和盘荷波导膜片孔径a大小有关,在相同功率下,a越小,场强越高;再次还和行波的相速度有关,相速度越低,行波场强也越低。此外,在加速管中由于膜片的存在,还会激励起无穷多个空间谐波,它们要带走全部微波功率的10%30%。可以有复杂的公式来计算上述诸因素对加速场强 的影响。当时,有下面的简化公式: 式中P为该处的微波功率, 为空间谐波系数( ),越小, 越大;a越小, 值越小,从而用于建立基波场强的功率就越小。譬如 , 。EzpaEz297.67 . 09 . 0p1 . 0a75.0, 1p第55页/共86页第56页/共86页四、衰减系数及分流阻抗 微波功率在盘荷波导传输的过程中,在盘荷波导内壁必然会激励起高频电流,这高频电流会引起加速管发热,常称为高频损耗。它会引起微波功率沿加速管衰减,可用衰减系数来反映沿加速管功率损耗的程度,记为。微波功率沿加速管的变化正比于 和该处功率P,即 而衰减系数和盘荷波导尺寸、相速,频率有关。膜片孔径越小 , 越大。 还和材料及表面状态有关。Pdzdp2第57页/共86页 高频电流的产生和微波电场的建立是紧密联系在一起的。当然不同的加速管结构,不同的加速管几何尺寸,不同的相速度,在消耗相同的功率条件下,会建立起不同幅值的场强。为了衡量这一性质,在行波加速管中引入一个行波分流阻抗 的概念,用来表示在加速结构中建立起的加速场强的平方与单位长度加速结构所损耗的微波功率的比值,表示为 分流阻抗是一个很重要的参数,人们总希望大一些,在消耗相同的微波功率时,能建立起更高的加速场强。和盘荷波导的工作模式有关,工作于 模时, 最高。减少膜片厚度对 提高也有好处。在10cm波段,一般 。ZTPdzdpEEZzzT22232mMZT/6050ZTZTZTZT第58页/共86页 五、束流负载及微波功率损耗的分配 微波功率沿加速管的衰减还有一个原因是束流负载对微波功率的吸收。换言之,微波功率建立起行波电场加速了电子束,束流获得了能量。束流能量的增加是以损耗微波能量为代价的。考虑到束流负载之后,式(2-33)应该增加束流负载一项,即式中I为束流强度,为束流感受到的电场强度。考虑到式(2-34),积分式(2-35),可得微波功率沿加速管分布的表达式式中为加速管入口的微波功率; 称为束流负载系数。IEzPdzdP2)352()1(1 20)(2eePzzzP)2(022/1PZIT第59页/共86页 图2-24画出了一台国产医用行波电子直线加速器沿主加速管功率分布曲线。图中所选用的参数为 馈入行波加速管的微波功率大约45%50%以欧姆损失的形式消耗在加速管壁上,大约40%50%转换为束流功率,大约10%左右功率到达行波加速管末端,并通过输出耦合器馈入匹配的吸收负载。一般这部分功率是白白消耗的,但有的医用行波电子直线加速器是将这部分功率反馈入加速管入口而加以利用。.22.1,00255.0,/58,1.0,95.00MWcmkVAIPEz第60页/共86页第61页/共86页六、群速度和微波功率沿加速管填充时间 相速度,即相位传播速度是指电磁波在盘荷波导中传播时相位移动速度。能量传输速度和相位传播速度不是一回事,相速度是波的一种状态的传播速度,基波场在波导中相位传播速度可以远大于光速,而能 量传输速度只能小于或等于光速,常用群速度来反映能量传输的速度。 能量传输过程是电磁场在加速管中建立和传输的过程。微波能量通过加速管每一个腔时,首先要进入每一个皱折槽,把皱折槽的电磁场建立起来,然后经槽底反射出来,在往前传输,因此能量传输速度是比较慢的。第62页/共86页 归根到底,在加速管中相速度和群速度的差别是由于加速管是一个色散系统,不同频率的波在加速管内传播时有着不同的相速度。实际上通过加速管的微波频率不是单色的,而是存在一个频谱,即存在一个不同频率的集合群。能量传输的速度是这个波群幅值最大值的移动速度。具体地讲,从磁控管发射出来的微波是一个一个脉冲调制波,如图2-25.能量传输速度可理解为这些调制波包络的移动速度。而这些调制的波是有不同频率波的集合群组成,每一个频率所对应的幅值可以对调制波进行傅里叶分解求得,其结果如图2-26所示,称为频谱图。第63页/共86页 该图可以用频谱仪观察到。因此能量传输速度是频谱中所包含的各频率组成的波群所合成的幅值最大值移动速度,这也是群速度名称的由来。显然它不同于单一频率的波的移动速度。 为了更直观地理解这个问题,认为波的集合群是有两个频率相近,幅值相同的波组成,求出它们合成波的振幅最大值的移动速度。 设它们的角频率分别为,相应的相位常数也会稍有差别。两个波分别表示成第64页/共86页第65页/共86页第66页/共86页第67页/共86页第68页/共86页第五节 驻波加速原理 一、电子驻波原理发展概述 尽管20世纪60年代后期,驻波电子直线加速器获得了迅速的发展,然而其原理并不新颖。早在20世纪40年代中期,在开始研究行波电子直线加速器的同时,不少小组就已经注意到利用驻波电场加速电子。驻波工作方式,就是加速管的末端不接匹配负载,而接短路面,使微波在终端反射,所反射的微波沿电子加速的反方向前进,如果加速结构的始端也放置短路面,那上述的反射功率在始端再次被反射,如果加速管的长度合适,则反射波和入射波相位一致,加强了入射波,在加速管内形成驻波状态。第69页/共86页 美国麻省理工学院斯拉特等人在19471948年间就注意到了这一点。1951年,他们建成了一台模工作的驻波直线加速器,把电子能量加速到18Mev。 用两金属板短接盘和波导而构成的驻波结构最简单,但分流阻抗低。而且工作在/2时,有半数腔只起耦合作用,对加速没有贡献,加速效率很低;而工作在模时,又由于模式分割窄,腔数不能太多,以及群速度很低不利稳定工作,因此这种单周期驻波加速结构没有竞争力。第70页/共86页 20世纪60年代初,美国洛斯阿拉莫斯国家实验室(Los Alamos National Laboratory,LANL)为了建造800Mev的介子工厂时,曾经研究过多种驻波加速结构,后在等人领导下终于发展了一种新颖的驻波加速结构边耦合加速结构。它的基本思想是,把工作在驻波工作状态/2时只起耦合作用的腔,从束流轴线上移开,移到加速腔的边上,耦合腔留下来的空间为加速腔所扩展占有,加速腔通过边孔和耦合腔耦合,相邻两个加速腔相差第71页/共86页 此结构既具有模的效率,又具有模的工作稳定性。由于这种边耦合驻波加速结构分流阻抗高,工作稳定性好,尺寸加工公差要求松,因此很快就被美国瓦里安公司按比例缩小,把原来加速质子的结构改成适合加速电子的结构,1968年先后成功地把边耦合结构应用于医用和无损检测用的驻波电子直线加速器。该成果在电子直线加速器发展史上具有历程碑性意义,使驻波电子直线加速器的发展进入了一个崭新的阶段。 边耦合驻波加速结构的提出,也推动了其它各种类型驻波加速结构的发展,这包括磁轴耦合的双周期结构,三周期结构,还腔耦合双周期结构,电轴耦合双周期、三周期结构,交叉式高梯度驻波加速的发展。在我国70年代起,各种驻波加速结构也得到了迅速的发展。各种辅助系统的配合,也使驻波优越性能得到实现。第72页/共86页二、驻波加速原理 (一)无论哪种驻波加速结构,都可看成是一系列以一定方式耦合起来的谐振腔链,在谐振腔轴线上有可让电子通过的中孔,在腔中建立起随时间振荡的轴向电场,轴上电场的大小和方向是随时间交变的,而这种振荡的包络线都是原地不动的,故称为驻波。图2-28画出了工作在模的典型驻波结构的场分布图。如图2-28所示,轴线上的中孔既是束流通道又是实现腔间耦合的耦合孔。从图中可知,每一个腔内场大小及方向是随时间交变的,而出现场强最大值,和零值的地方是不随时间变化的。场是位置和时间的函数,在每一个腔中电场强度可表示成第73页/共86页第74页/共86页2-28第75页/共86页 当图2-28中 腔的电场随时间渐渐从小到大,而方向又正好合适加速电子时, 腔的电场方向却是减速的,但过一会,当 腔的场值随时间变成减速方向时,则 腔电场的方向变得能正好加速电子。因此可以设想,如果让电子在 腔的场正好由负变正那一瞬间(场强正是加速方向)注入其中,电子在前进时,场强不断增加,电子不断获得能量,场强正好到达峰值时,电子也正好到达腔的中央。其后场强开始下降,电子在后半腔中飞行,当场强开始由正变负时电子正好飞出 进入下一个腔。这时 腔的场强又正好由负变正。电子在 腔中又能继续加速获得能量。如果这种安排能得到满足,电子就可不断获得能量。这就是驻波加速原理。1#2#1#2#1#2#2#1#第76页/共86页 式(2-45)。 第77页/共86页第六节 驻波加速管结构 驻波加速(管)结构在驻波电子直线加速器中占有重要地位,它是驻波加速器的核心,它的性能很大程度上决定了整机的性能。 驻波加速管分类: 按每一个腔的平均相移来划分: 模、 模、0模 按结构包括的周期数来划分:单周期、双周期、三周期 按耦合孔位置来划分:轴耦合、边耦合、环腔耦合 按电磁场耦合方式来划分:电耦合、磁耦合 目前国际上广泛采用的是磁边耦合及磁轴耦合的双周期结构32第78页/共86页一、描述驻波加速结构性能的基本参量 1、单位长度的分流阻抗Z 单位长度的分流阻抗等于所建立起的跨越腔的最大电压平方与单位长度上消耗的微波功率之比,记为Z第79页/共86页2.渡越时间因子T 电子穿过加速结构(腔)是需要时间的,这时间成为渡越时间。在渡越时间内,腔中的场是变化的, 电子不可能都感受到电场的幅值,因此电子渡越加速腔时,所获得的能量 总是小于V, 定义V和之比为渡越时间因子T)cos()(),(tztzEEzzWW第80页/共86页3.单位长度上的有效分流阻抗 反映一个驻波加速管加速效率最本质的参量是单位长度上的有效分流阻抗。它等于电子所获得能量平方与单位长度上所损耗的微波功率之比,记为 (或 )ZsZT2第81页/共86页4.无载品质素表示在高频周期内每个弧度内消耗功率P在腔内所获得的储能W,记为Q0Q0PWQ0)552(第82页/共86页二、双周期驻波加速(管)结构 (一)单周期驻波加速结构 最简单的驻波加速结构是双端短路的均匀盘荷波导,各腔体通过膜片的中心孔之间电场相互耦合在一起。当然,单周期结构也可以用磁耦合方法来相互耦合。根据短路条件的不同,可以形成0模、 模、 模场分布的示意图。单周期结构是一种均匀结构,构成驻波腔链的每一个腔体的振荡频率都相同,由N+1个固有频率相同的腔组成的耦合腔的链可以有N+1个振荡频率,它们的值分别为2第83页/共86页第84页/共86页 式(2-56)中的k为腔间耦合系数,K值大

    注意事项

    本文(电子直线加速器的工作原理.pptx)为本站会员(莉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开