欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    全等三角形难题集锦超级好07828(7页).doc

    • 资源ID:35715035       资源大小:644KB        全文页数:7页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    全等三角形难题集锦超级好07828(7页).doc

    -全等三角形难题集锦超级好07828-第 7 页1.如图,已知等边ABC,P在AC延长线上一点,以PA为边作等边APE,EC延长线交BP于M,连接AM,求证:(1)BP=CE; (2)试证明:EM-PM=AM.2.已知,如图所示,在和中,且点在一条直线上,连接分别为的中点(1)求证:;CENDABM图CAEMBDN图(2)在图的基础上,将绕点按顺时针方向旋转,其他条件不变,得到图所示的图形请直接写出(1)中的两个结论是否仍然成立. 3.已知:如图,是等边三角形,过边上的点作,交于点,在的延长线上取点,使,连接(1)求证:;(2)过点作,交于点,请你连接,并判断是怎样的三角形,试证明你的结论4、在中,将绕点顺时针旋转角得交于点,分别交于两点如图1,观察并猜想,在旋转过程中,线段与有怎样的数量关系?并证明你的结论;ADBECFADBECFABCDEF5. 如图所示,ABC是等腰直角三角形,ACB90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:ADCBDE6已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证AECFBD图1图3ADFECBADBCE图2F当绕点旋转到不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、又有怎样的数量关系?请写出你的猜想,不需证明7、已知AC/BD,CAB和DBA的平分线EA、EB与CD相交于点E.求证:AB=AC+BD.8.等边ABC,D为ABC外一点,BDC=120°,BD=DCMDN=60°射线DM与直线AB相交于点M,射线DN与直线AC相交于点N,当点M、N在边AB、AC上,且DM=DN时,直接写出BM、NC、MN之间的数量关系当点M、N在边AB、AC上,且DMDN时,猜想中的结论还成立吗?若成立,请证明当点M、N在边AB、CA的延长线上时,请画出图形,并写出BM、NC、MN之间的数量关系9.如图1,BD是等腰的角平分线,.ABCDFE图2(1)求证BC=AB+AD;(2)如图2,于F,交延长线于E,求证:BD=2CE;10、如图,四边形ABCD中,AC平分BAD,CEAB于E,AD+AB=2AE,则B与ADC互补.为什么?DBEAC11如图,在ABC中ABC,ACB的外角平分线交P.求证:AP是BAC的角平分线EBAC图2D12、如图在四边形ABCD中,AC平分BAD,ADCABC180度,CEAD于E,猜想AD、AE、AB之间的数量关系,并证明你的猜想,13如图,已知在ABC中,B=60°,ABC的角平分线AD,CE相交于点O,求证:OE=OD14如图所示,已知在AEC中,E=90°,AD平分EAC,DFAC,垂足为F,DB=DC,求证:BE=CF15如图,OP是MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:(1)如图,在ABC中,ACB是直角,B=60°,AD、CE分别是BAC、BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;OPAMNEBCDFACEFBD图图图(2)如图,在ABC中,如果ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。16、已知:如图,ABC中,ABC=45°,CDAB于D,BE平分ABC,且BEAC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。 (!)求证:BF=AC; (2)求证:CE=BF; (3)CE与BC的大小关系如何?试证明你的结论。17、如图,在四边形ABCD中,AB=BC,BF是ABC的平分线,AFDC,连接AC、CF,求证:CA是DCF的平分线。18如图,在ABC中,A=90°,D是AC上的一点,BD=DC,P是BC上的任一点,PEBD,PFAC,E、F为垂足求证:PE+PF=AB19.如图,已知ABC中,AB=AC=6cm,B=C,BC=4cm,点D为AB的中点(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD与CQP是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD与CQP全等?(2)若点Q以中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC三边运动,则经过 后,点P与点Q第一次在ABC的 边上相遇?(在横线上直接写出答案,不必书写解题过程)20已知:在ABC中,ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的左侧作等腰直角ADE,解答下列各题:如果AB=AC,BAC=90°(i)当点D在线段BC上时(与点B不重合),如图甲,线段BD,CE之间的位置关系为(ii)当点D在线段BC的延长线上时,如图乙,i)中的结论是否还成立?为什么?21.如图14-1,在ABC中,BC边在直线l上,ACBC,且AC = BCEFP的边FP也在直线l上,边EF与边AC重合,且EF=FP(1)在图14-1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将EFP沿直线l向左平移到图14-2的位置时,EP交AC于点Q,连结AP,BQ猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP沿直线l向左平移到图14-3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由22.如图1,A、E、F、C在同一条直线上,AE=CF,过E、F分别作DEAC,BFAC,若AB=CD,试说明BD平分EF;若将DEC的边EC沿AC方向移动变为图2时,其余条件不变,BD是否还平分EF,请说明理由。23如图,ABC中,ACB90°,ACBC,AE是BC边上的中线,过C作CFAE,垂足为F,过B作BDBC交CF的延长线于D求证:(1)AECD; (2)若AC12 cm,求BD的长 24如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,DEA=ACB=90°,DAE=ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断EMC的形状,并说明理由25已知BE,CF是ABC的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系26.如图:在ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取 CG=AB,连结AD、AG。 求证:(1)AD=AG, (2)AD与AG的位置关系如何。27已知:BD,CE是ABC的高,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB. 求证:AGAF BCDAGEF28、在等边的两边AB、AC所在直线上分别有两点M、N,D为外一点,且,BD=DC. 探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及的周长Q与等边的周长L的关系图1 图2 图3(I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ; 此时 ; (II)如图2,点M、N边AB、AC上,且当DMDN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明; (III) 如图3,当M、N分别在边AB、CA的延长线上时,若AN=,则Q= (用、L表示)29、已知四边形中,绕点旋转,它的两边分别交(或它们的延长线)于当绕点旋转到时(如图1),易证当绕点旋转到时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段,又有怎样的数量关系?请写出你的猜想,不需证明(图1)(图2)(图3)30 在RtABC中,ACBC,ACB90°,D是AC的中点,DGAC交AB于点G.(1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与 CF,过点F作FHFC,交直线AB于点H求证:DG=DC判断FH与FC的数量关系并加以证明(2)若E为线段DC的延长线上任意一点,点F在射线DG上,(1)中的其他条件不变,借助图2画出图形。在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变(本小题直接写出结论,不必证明)3CD经过的顶点C,CA=CBE、F分别是直线CD上两点,且(1)若直线CD经过的内部,且E、F在射线CD上,请解决下面两个问题:如图1,若,则 (填“”,“”或“”号);如图2,若,若使中的结论仍然成立,则 与 应满足的关系是 ;(2)如图3,若直线CD经过的外部,请探究EF、与BE、AF三条线段的数量关系,并给予证明ABCEFDDABCEFADFCEB图1图2图332.已知:如图,四边形ABCD中,AC平分ÐBAD,CEAB 于E,且ÐB+ÐD=180°,求证:AE=AD+BE 33.操作:如图,ABC是正三角形,BDC是顶角BDC120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN探究:线段BM、MN、NC之间的关系,并加以证明34如图所示,已知ABC中,AB=AC,D是CB延长线上一点,ADB=60°,E是AD上一点,且DE=DB,求证:AC=BE+BC35已知,如图,三角形ABC是等腰直角三角形,ACB=90°,F是AB的中点,直线l经过点C,分别过点A、B作l的垂线,即ADCE,BECE,(1)如图1,当CE位于点F的右侧时,求证:ADCCEB;(2)如图2,当CE位于点F的左侧时,求证:ED=BE-AD;(3)如图3,当CE在ABC的外部时,试猜想ED、AD、BE之间的数量关系,并证明你的猜想36.如图1、图2、图3,AOB,COD均是等腰直角三角形,AOBCOD90º,(1)在图1中,AC与BD相等吗,有怎样的位置关系?请说明理由。(2)若COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗,还具有那种位置关系吗?为什么? (3)若COD绕点O顺时针旋转一定角度后,到达图3的位置,请问AC与BD还相等吗?还具有上问中的位置关系吗?为什么?37复习“全等三角形”的知识时,老师布置了一道作业题:“如图,已知在ABC中,AB=AC,P是ABC内部任意一点,将AP绕A顺时针旋转至AQ,使QAP=BAC,连接BQ、CP,则BQ=CP”小亮是个爱动脑筋的同学,他通过对图的分析,证明了ABQACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图给出证明38 D为等腰斜边AB的中点,DMDN,DM,DN分别交BC,CA于点E,F。(1) 当绕点D转动时,求证DE=DF。(2) 若AB=2,求四边形DECF的面积。39、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DCBE图1图2DCEAB40、如图所示,已知AEAB,AFAC,AE=AB,AF=AC。求证: (1)EC=BF;(2)ECBFAEBMCF

    注意事项

    本文(全等三角形难题集锦超级好07828(7页).doc)为本站会员(1595****071)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开