2022年《信号与系统》学习笔记 .pdf
学习笔记(信号与系统)第一章信号和系统信号的概念、描述和分类信号的基本运算典型信号系统的概念和分类1、常常把来自外界的各种报道统称为消息;信息是消息中有意义的内容;信号是反映信息的各种物理量, 是系统直接进行加工、 变换以实现通信的对象。信号是信息的表现形式, 信息是信号的具体内容; 信号是信息的载体, 通过信号传递信息。2、 系统(system) : 是指若干相互关联的事物组合而成具有特定功能的整体。3、信号的描述数学描述,波形描述。信号的分类:1)确定信号(规则信号)和随机信号确定信号或规则信号可以用确定时间函数表示的信号;随机信号若信号不能用确切的函数描述, 它在任意时刻的取值都具有不确定性,只可能知道它的统计特性。2)连续信号和离散信号连续时间信号在连续的时间范围内(- t)有定义的信号称为连续时间信号, 简称连续信号, 实际中也常称为模拟信号; 离散时间信号仅在一些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号, 实际中也常称为数字信号。3)周期信号和非周期信号周期信号是指一个每隔一定时间T,按相同规律重复变化的信号;非周期信号不具有周期性的信号称为非周期信号。4)能量信号与功率信号能量信号信号总能量为有限值而信号平均功率为零;功率信号平均功率为有限值而信号总能量为无限大。5)一维信号与多维信号信号可以表示为一个或多个变量的函数,称为一维或多维函数。6)因果信号若当 t0 时 f(t)0 的信号 , 称为因果信号;非因果信号指的是在时间零点之前有非零值。4、信号的基本运算:名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 1 页,共 39 页 - - - - - - - - - 信号的、运算 : 两信号 f1( ) 和 f2( ) 的相、指同一时刻两信号之值对应相加减乘。平移: 将 f(t)f(t + t0) 称为对信号 f( )的平移或移位 , 若 t01,则 f(at)将 f(t)的波形沿时间轴压缩至原来的1/a ;若 0a0 时,信号将随时间而增长;a0 时,增幅振荡正、余弦信号;0 时,衰减振荡正、余弦信号;=0时等振幅振荡正、 余弦信号;=0 时,实指数信号; =0且=0 时,直流信号。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 2 页,共 39 页 - - - - - - - - - 4)抽样信号 :Sa(t) 具有以下性质:,;Sa(0)=1,Sa(t )=0(t=, 2,) 。5)钟形信号 :6、单位阶跃函数和单位冲激函数1)单位阶跃函数 :可以方便地表示某些信号,用阶跃函数表示信号的作用区间,积分计算;1单位冲激函数为偶函数:;2加权特性:3抽样特性:,;4尺 度 变 换 :,;5导数(冲激偶):,冲激偶的抽样特性:,冲激偶的加权特性:,。2)单位冲激函数 :单位冲激函数是个奇异函数, 它是对强度极大, 作用时间极短一种物理量的理想化模型。3)冲激函数与阶跃函数关系: 阶跃函数序列与冲激函数序列。7、信号的分解直流分量 fD与交流分量 fA(t) :,其中 fD为直流分量即信号的平均值。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 3 页,共 39 页 - - - - - - - - - 偶分量与奇分量 :, 其中 fe=为偶分量,fo=为奇分量。脉冲分量一种分解为矩形窄脉冲分量:,另一分解为阶跃信号分量之叠加。实部分量与虚部分量 :对于瞬时值为复数的信号f(t)可分解为实、虚部两个部分之和。正交函数分量 :, 用正交函数集来表示一个信号,组成信号的各分量就是相互正交的。8、系统:若干相互作用、相互联系的事物按一定规律组成具有特定功能的整体称为系统。9、系统的分类及性质连续系统与离散系统 : 输入和输出均为连续时间信号的系统称为连续时间系统;输入和输出均为离散时间信号的系统称为离散时间系统。连续时间系统的数学模型是用微分方程来描述,而离散时间系统的数学模型是用差分方程来描述。动态系统与即时系统 :若系统在任一时刻的响应不仅与该时刻的激励有关,而且与它过去的历史状况有关,则称为动态系统或记忆系统;含有记忆元件(电容、电感等 ) 的系统是动态系统,否则称即时系统或无记忆系统。线性系统与非线性系统 :能同时满足齐次性与叠加性的系统称为线性系统。满足叠加性是线性系统的必要条件; 不能同时满足齐次性与叠加性的系统称为非线性系统。时不变系统与时变系统 :满足时不变性质的系统称为时不变系统。时不变性质 : 若系统满足输入延迟多少时间,其激励引起的响应也延迟多少时间。因果系统与非因果系统 :激励引起的响应不会出现在激励之前的系统,称为因果系统;也就是说,如果响应r(t)并不依赖于将来的激励 如 e(t+1),那么系统就是因果的。稳定系统与不稳定系统:一个系统,若对有界的激励f(.)所产生的响应y=f(.)也是有界时,则称该系统为有界输入有界输出稳定, 简称稳定;即若 f(.),其 yf(.),则称系统是稳定的。线性时不变系统 :LTI 连续系统的微分特性和积分特性线性性质包括两方面: 齐次性和可加性, 若系统既是齐次的又是可加的,则称该系统是线性的,即Ta f1( ) + bf2( ) = a T f1() + bT f2( ) 。当动态系统满足下列三个条件时该系统为线性系统:可分解性 +零状态线性 +零输入线性。10、描述连续动态系统的数学模型是微分方程,描述离散动态系统的数学模型是差分方程。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 4 页,共 39 页 - - - - - - - - - 解析描述 - 系统模拟框图描述。11、系统分析研究的主要问题:对给定的具体系统, 求出它对给定激励的响应; 也可以说, 系统分析就是建立表征系统的数学方程并求出解答。采用的数学工具: 卷积积分与卷积和, 傅里叶变换,拉普拉斯变换, Z 变换。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 5 页,共 39 页 - - - - - - - - - 第二章连续系统的时域分析微分方程的经典解法0+和 0-初始值零输入响应与零状态响应冲激响应和阶跃响应卷积积分1、微分方程的一般形式:微分方程的经典解:y(t)(完全解 ) = yh(t)(齐次解 ) + yp(t)(特解)齐次解是齐次微分方程的解, yh(t) 的函数形式由上述微分方程的特征根确定,而特解的函数形式与激励函数的形式有关。齐次解的函数形式仅与系统本身的特性有关,而与激励f(t)数形式无关,称为系统的固有响应或自由响应;特解的函数形式由激励确定,称为强迫响应。2、全响应齐次解 ( 自由响应 ) 特解 (强迫响应 ) 。齐次解:写出特征方程,求出特征根(自然频率或固有频率);根据特征根的特点,齐次解有不同的形式;一般形式(无重根):特解:根据输入信号的形式有对应特解的形式,用待定系数法确定; 在输入信号为直流和正弦信号时,特解就是稳态解。用初始值确定积分常数,一般情况下,n 阶方程有 n 个常数,可用 n 个初始值确定。3、0-状态称为零输入时的初始状态,即初始值是由系统的储能产生的;0+状态称为加入输入后的初始状态,即初始值不仅有系统的储能, 还受激励的影响。从 0-状态到 0+状态的跃变:当系统已经用微分方程表示时,系统的初始值从 0- 状态到 0+状态有没有跳变决定于微分方程右端自由项是否包含(t) 及其各阶导数;如果包含有 (t) 及其各阶导数, 说明相应的 0- 状态到 0+状态发生了跳变。0+状态的确定:已知 0-状态求 0+状态的值,可用冲激函数匹配法;求0+状态的值还可以用拉普拉斯变换中的初值定理求出。4、各种响应用初始值确定积分常数:在经典法求全响应的积分常数时,用的是0+状态初始值;在求系统零输入响应时,用的是0-状态初始值;在求系统零状态响应时,用的是0+状态初始值,这时的零状态是指0-状态为零。5、冲激函数匹配法 :目的:用来求解初始值,求(0)和( 0-)时刻值的关系;应用条件:如果微分方程右边包含(t )及其各阶导数,那么( 0)时刻名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 6 页,共 39 页 - - - - - - - - - 的值不一定等于( 0-)时刻的值;原理:利用 t 0 时刻方程两边的 (t )及各阶导数应该平衡的原理来求解(0) 。6、零输入响应:没有外加激励信号的作用,只有起始状态所产生的响应;零状态响应: 不考虑起始时刻系统储能的作用,由系统外加激励信号所产生的响应;LTI 的全响应: y(t) = yx(t) + yf(t) 。1)零输入响应 ,即求解对应齐次微分方程的解:当特征方程的根 ( 特征根 )为 n 个单根 ( 不论实根、 虚根、 复数根 )1, 2,n时,则 yx(t) 的通解表达式为:当特征方程的根 ( 特征根 )为 n 个重根 ( 不论实根、虚根、复数根 ) 1=2=n时,yx(t) 的通解表达式为 : 步骤总结:求系统的特征根,写出yx(t) 的通解表达式;由于激励为零,所以零输入的初始值:,确定积分常数C1、C2、 Cn;将确定出的积分常数C1、C2、 Cn代入通解表达式,即得yx(t) 。2)零状态响应 ,即求解对应非齐次微分方程的解:基本步骤:求系统的特征根,写出的通解表达式yfh(t) ;根据 f(t)的形式,确定特解形式,代入方程解得特解yfp(t) ;求全解,若方程右边有冲激函数(及其各阶导数)时,根据冲激函数匹配法求得,确定积分常数 C1、C2、 Cn;将确定出的积分常数C1、C2、 Cn代入全解表达式,即得。几种典型自由项函数相应的特解:7、系统响应划分:自由响应( Natural )强迫响应( forced ) ;暂态响应( Transient )+稳态响应( Steady-state) ;零输入响应( Zero-input )零状态响应( Zero-state ) 。零输入响应是自由响应的一部分, 零状态响应有自由响应的一部分和强迫响名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 7 页,共 39 页 - - - - - - - - - 应构成 。8、冲激响应 :系统在单位冲激信号 (t) 作用下产生的零状态响应, 称为单位冲激响应,简称冲激响应,一般用h(t) 表示。阶跃响应 :系统在单位阶跃信号u(t )作用下的零状态响应,称为单位阶跃响应,简称阶跃响应,一般用g(t) 表示。阶 跃 响 应 与 冲 激 响 应 的 关 系 : 线 性 时 不 变 系 统 满 足 微 、 积 分 特 性、。阶跃响应是冲击响应的积分,注意积分限,对于因果系统为。9、任意信号的分解:任意信号作用下的零状态响应:卷积定义 :已知定义在区间(,)上的两个函数f1(t) 和 f2(t) ,则定义积分:()于是,任意信号的零状态响应即为:卷积的计算步骤 可分解为四步:1)换元: t 换为得 f1()、f2();2)反转平移:由 f2( ) 反转 f2() 右移 t f2(t- );3)乘积: f1()*f2(t- ) ;4)积分:从到对乘积项积分。10、卷积的性质交换律: ?1(t)*?2(t)= ?2(t)*?1(t) ;分配律: ?1(t)*?2(t)+ ?3(t)=?1(t)*?2(t)+ ?1(t)* ?3(t) ;结合律: ?1(t)* ?2(t)*?3(t)= ?1(t)*?2(t)* ?3(t);微分性质:;积分性质:;微积分性质:;名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 8 页,共 39 页 - - - - - - - - - 应用微积分性质的条件是必须成立,即必须有。f(t)与冲激函数的卷积: ?(t)*(t)=f(t);?(t)*(t-t0)=?(t-t0);?(t-t1)* (t-t2)=?(t-t1-t2) ;(t-t1)* (t-t2)=(t-t1-t2) 。f(t)与冲激偶函数的卷积: ?(t)*(t)=f(t)*(t)= ?(t);?(t)*(t)=?(t)。f(t)与阶跃函数的卷积:;。时移性质:若 ?1(t)* ?2(t)= ?(t) ,则有 ?1(t-t1)* ?2(t-t2)=?(t-t1-t2) 。利用卷积积分的性质来计算卷积积分,可使卷积积分的计算大大简化。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 9 页,共 39 页 - - - - - - - - - 第三章频域分析第一节 引言1、从本章开始由时域转入 变换域分析 。首先讨论傅里叶变换, 傅里叶变换是在傅里叶级数正交函数展开的基础上发展而产生的,这方面的问题也称为傅里叶分析(频域分析),将信号进行正交分解,即分解为三角函数或复指数函数的组合。频域分析将时间变量变换成频率变量,揭示了信号内在的频率特性以及信号时间特性与其频率特性之间的密切关系。2、已知一些基本信号,将任意一个信号e(t) (或者我们需要研究的信号)用一个基本信号的线性组合来表示(信号分解)。如果已知基本信号通过LTI 系统的响应 r(t),那么任意信号通过系统的响应就可以用 r(t)的线性组合来表示。3、由系统的组成来说:当输入为指数信号时,系统的输出一定也是一个指数信号,只不过指数信号幅值发生变化。指数信号通过 LTI 系统的输出,利用卷积法(输入为) :设,则。4、设激励信号为 sin( 0t), 系统的频率响应为,则系统的稳态响应为:正弦信号为 sin( 0t) 作为激励的稳态响应为与激励同频率的信号,幅度 H(j0) 由加权,相移(0) ,H(j ) 代表了系统对信号的处理效果。5、三角变换名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 10 页,共 39 页 - - - - - - - - - 第二节 周期信号傅里叶级数分析三角函数形式的傅氏级数指数函数形式的傅氏级数两种傅氏级数的关系频谱图函数的对称性与傅里叶级数的关系周期信号的功率傅里叶有限级数与最小方均误差1、 cos(n 1t),sin(n1t) 是一个完备的正交函数集, t 在一个周期内,n=1,2,3 ,。由积分可知:2、傅里叶级数的三角展开式 :其中:分析,。3、可画出频谱图:cn关系曲线称为 幅度频谱图 ;名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 11 页,共 39 页 - - - - - - - - - n关系曲线称为 相位频谱图 。4、指数函数形式的傅里叶级数:复指数正交函数集: ejn 1t ,n=1,2,。级数形式:。系数:。周期信号可分解为( -,)区间的指数信号ejn 1t的线性组合。5、两种系数之间的关系:幅频特性:;相频特性:。其中 an、( n1)为关于的偶函数; bn、F(n1)为关于的奇函数。6、周期信号的傅里叶级数有两种形式:三角形式和指数形式;三角函数形式的频谱图为单边频谱,指数形式的频谱图为双边频谱;三个性质:收敛性、谐波性、唯一性;引入负频率: 函数分解为虚指数, 必须有共轭对, 才能保证原实函数的性质不变。7、偶函数的傅里叶形式:傅里叶级数中不含正弦项,只含直流项和余弦项,F(n1)为实函数。奇函数的傅里叶形式:奇函数中的傅里叶函数中无余弦分量,F(n1)为虚函数。奇谐函数的傅里叶形式:名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 12 页,共 39 页 - - - - - - - - - 奇谐函数傅里叶级数的偶次谐波为零。偶谐函数的傅里叶形式:偶谐函数傅里叶形式的奇次谐波为零。8、能量信号:一个信号如果能量有限,称之为能量信号;功率信号:如果一个信号功率是有限的,称之为功率信号。连续信号能量:;离散信号能量:。物理可实现的信号常常是时间t ( 或 n)的实函数 ( 或序列 ),其在各时刻的函数(或序列 ) 值为实数,称它们为实信号;函数(或序列)值为复数的信号称为复信号。周期信号平均功率 = 直流、基波及各次谐波分量有效值的平方和;也就是说,时域和频域的能量是守恒的,总平均功率 = 各次谐波的平均功率之和。|Fn|2绘成的线状图形, 表示各次谐波的平均功率随频率的分布情况,称为功率谱系数 。9、傅里叶有限级数与 最小方均误差 :设 有 限 级 数 傅 里 叶 级 数 为, 用来逼近,那么误差函数为,方均误差为。如果完全逼近,则项数n=。10、对于周期信号 f(t)=f(t+nT) ,当其满足狄氏条件时,可展成:基本信号。可见,ej t通过线性系统后响应随时间变化服从e-j t, H(j ) 相当加权函数。H(j ) 为 h(t) 的傅立叶变换,也称为系统频率特性或系统函数 。第三节 典型周期信号的傅里叶级数频谱的特点频谱结构频带宽度能量分布1、本节以周期矩形脉冲信号为例进行分析,其脉冲宽度为,脉冲高度为名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 13 页,共 39 页 - - - - - - - - - E,周期为 T1。1)包络线形状为抽样函数;2)其最大值在 n=0处,为 E/T1;3)离散谱(谐波性);4)第一个零点坐标为2/ ;5)F(n1)是复函数。2、。矩形脉冲的频谱说明了周期信号频谱的特点:离散性、谐波性、收敛性。第一个零点集中了信号绝大部分能量(平均功率);由频谱的收敛性可知,信号的功率集中在低频段。周期矩形脉冲信号的功率。3、在满足一定失真条件下,信号可以用某段频率范围的信号来表示,此频率范围称为 频带宽度 。对于一般周期信号,将幅度下降为的频率区间定义为频带宽度。第四节傅里叶变换傅里叶变换傅里叶变换的表示傅里叶变换的物理意义傅里叶变换存在的条件1、傅里叶变换对:由 f (t )求 F()称为 傅里叶变换 :名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 14 页,共 39 页 - - - - - - - - - F()一般为复信号可表示为:,其中幅度频谱、相位频谱。由 F()求 f (t )称为傅里叶反变换:2、傅里叶变换可表示为不同的形式:实部为偶函数,虚部为奇函数;摸为偶函数,相位为奇函数。其意义为无穷多个频域范围为0、振幅为无穷小的连续三角函数之和;或者无穷多个频域范围为- +、振幅为无穷小的连续指数函数之和。3、傅里叶变换存在的条件:,即 f (t )绝对可积。第五节典型非周期信号的傅里叶变换矩形脉冲单边指数信号直流信号符号函数升余弦脉冲信号1、矩形脉冲信号幅度频谱,相位频谱。2、单边指数信号名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 15 页,共 39 页 - - - - - - - - - 幅度频谱,相位频谱。3、直流信号()时域无限宽,频带无限窄() :4、抽样信号()5、符号函数()幅度频谱为,相位频谱为。6、升余弦脉冲信号()其幅度频谱为,其频谱比矩形脉冲更集中。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 16 页,共 39 页 - - - - - - - - - 第六节 冲激函数和阶跃函数的傅里叶变换冲激函数冲激偶单位阶跃函数1、冲激函数2、冲激偶的傅里叶变换3、单位阶跃函数()第七节 傅里叶变换的基本性质对称性质线性性质奇偶虚实性尺度变换性质时移特性名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 17 页,共 39 页 - - - - - - - - - 频移特性微分性质时域积分性质1、傅里叶变换具有惟一性,傅氏变换的性质揭示了信号的时域特性和频域特性之间确定的内在联系。 2、对称性质,。,。3、线性性质、,(c1、c2 为常数) 。4、奇偶虚实性,即,。5、尺度变换性质,则(a 为非零常数)。0a1时域压缩,频域扩展 a 倍,幅度降低 a 倍。此例说明:信号的持续时间与信号占有频带成反比。有时为加速信号的传递,要将信号持续时间压缩,则要以展开频带为代价。6、时移特性,。幅度频谱无变化,只影响相位频谱。时移加尺度变换,。7、频移特性若,则、。,。8、微分性质时域微分性质:若,则;频域微分性质:若,则。如果 f(t)中有确定的直流分量,应先取出单独求傅里叶变换,余下部分再用微分性质。9、时域积分性质名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 18 页,共 39 页 - - - - - - - - - 若, 则,也可以记作。10、一个未经调制的高频正弦信号为:载波振幅随调制信号的变化规律而变称为调幅;载波频率随调制信号的变化规律而变称为调频;载波相位随调制信号的变化规律而变称为调相。第八节 卷积特性(卷积定理)卷积定理卷积定理的应用1、 时域卷积定理 :若、,则。时域卷积对应频域频谱密度函数乘积。频域卷积定理 :若、,则。频谱函数的卷积对应相应时间函数乘积的2倍。2、冲激偶冲激偶的性质 :1)筛选性,对( t )的 k 阶导数。2)时移。3)奇函数、。4)冲激偶的面积为零。5)。3、 能量为有限值的信号称能量信号; 平均功率为有限值的信号称功率信号。信号 f (t )的能量定义为: E=;信号 f (t )的平均功率定义为:P=。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 19 页,共 39 页 - - - - - - - - - 4、Parseval 定理:周期信号的功率等于该信号在完备正交函数集中各分量功率之和。Parseval定理:非周期信号在时域中求得的信号能量等于在频域中求得的信号能量。5、能量信号的 能量密度频谱函数G () :为能量密度频谱,表示在处的单位频带中的信号能量。非周期信号可分为无限多个振幅为无限小的频率分量,各频率分量的能量也是无穷小量;为了表示信号的频谱特征, 可以借助能量密度的概念; 能谱 G () 表示信号的能量密度在频域中随频率的变化情况。6、 连续时间系统的频域分析: LTI系统的全响应零输入响应零状态响应。时域分析法:;频域分析法:,即。其中称为系统函数。频域分析是变换域分析法的一种,另外还有复频域分析法、 Z域分析法等。第九节 周期信号的傅里叶变换正弦信号的傅里叶变换一般周期信号的傅里叶变换如何由 F0( ) 求 F(n1) 单位冲激序列的傅氏变换周期矩形脉冲序列的傅氏变换1、周期信号:;非周期信号:。2、正弦信号的傅里叶变换由欧拉公式,已知,由频移性质得:名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 20 页,共 39 页 - - - - - - - - - 3、一般周期信号的傅里叶变换周期信号的 F()只存在于 =n1处,频率范围无限小,幅度为。可由 F0()求周期函数 fT(t )的谱系数 F (n1) ,即单个脉冲的 F0()与周期信号 fT(t )的谱系数 F(n1) :4、周期单位冲激序列的傅里叶变换,因为T(t )的傅氏级数谱系数是。T(t )的频谱密度函数仍是冲激序列,强度和间隔都是1。5、周期矩形脉冲序列的傅氏变换第十节 抽样信号的傅里叶变换抽样理想抽样矩形脉冲抽样抽样定理1、理想抽样(周期单位冲激抽样)名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 21 页,共 39 页 - - - - - - - - - 2、矩形脉冲抽样3、抽样定理:在一个频带限制在(0,fh)内的时间连续信号f (t ) ,如果以小于等于 1/(2fh) 的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。或者说,如果一个连续信号f (t )的频谱中最高频率不超过fh,这种信号必定是个周期性的信号,当抽样频率f S 2fh时,抽样后的信号就包含原连续信号的全部信息, 而不会有信息丢失, 当需要时, 可以根据这些抽样信号的样本来还原原来的连续信号。4、重建原信号的必要条件:;不满足此条件,就会发生频谱混叠现象,即抽样频率fs2fm是必要条件,或抽样间隔Ts1/2fm。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 22 页,共 39 页 - - - - - - - - - Ts=1/2fm是最大抽样间隔,称为“奈奎斯特抽样间隔” ;fs=2fm是最低允许抽样频率,称为“奈奎斯特抽样频率” 。5、狄利克雷( Dirichlet)条件 :1)在一周期内,如果有间断点存在,则间断点的数目应是有限个;2)在一周期内,极大值和极小值的数目应是有限个;3)在一周期内,信号绝对可积。6、系统的响应波形与激励波形不相同,称信号在传输过程中产生了失真。幅度失真 :系统对信号中各频率分量的幅度产生不同程度的衰减,引起幅度失真。相位失真 :系统对各频率分量产生的相移不与频率成正比,造成各频率分量在时间轴上的相对位置变化,引起相位失真。7、理想低通滤波器的频域特性:c为截止频率 (Cut off frequency)。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 23 页,共 39 页 - - - - - - - - - 第四章拉普拉斯变换、连续时间系统的 s 域分析引言拉普拉斯变换的定义、收敛域拉氏变换的基本性质拉普拉斯逆变换系统函数 H(s) 频率响应特性滤波特性的分类线性系统的稳定性拉氏变换与傅里叶变换的关系1、拉氏变换是求解常系数线性微分方程的工具,优点如下:1)求解步骤得到简化 , 可以把初始条件包含到变换式里,直接求得全响应;2)拉氏变换分别将时域的“微分”与“积分”运算转换为s 域的“乘法”和“除法”运算,也即把微积分方程转化为代数方;3)将指数函数、超越函数等复杂函数转化为简单的初等函数;4) 将时域中的卷积运算转化为s 域中的乘法运算,由此建立起系统函数H(s)的概念;5) 利用系统函数零、 极点分布可以简明、 直观地表达系统性能的许多规律。2、当 f (t )满足绝对可积条件时,存在傅里叶变换:由于绝对可积条件限制了某些增长信号傅里叶变换的存在,考虑在f (t )上乘以收敛因子,若 f1(t )绝对可积,则存在傅里叶变换:()单边拉氏变换 :。双边拉氏变换 :。双边拉氏变换的收敛域有两个边界,一个是由 t 0的函数决定的左边界1, 另一个是由 t 0的函数决定的右边界2;若12,则双边拉氏变换存在,收敛域为12,若12,则双边拉氏变换不存在。3、f (t )为原函数, F(s)为象函数。拉氏逆变换:。算子符号法:,。4、要使 f (t )的拉氏变换存在,必须有。若存在0,使得0时,成立,则 s 平面上0的区域称为 F(s) 的收敛域。1)对仅在有限时间范围内取非零值的能量有限信号,收敛域为整名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 24 页,共 39 页 - - - - - - - - - 个 s 平面;2)对幅度既不增长也不衰减而等于稳定值的信号,收敛域为 s 右半平面;3)随时间 t 成正比增长或随tn成正比增长的信号,收敛域为 s 右半平面;4)按指数阶规律 et增长的信号,收敛域为;5)对于一些比指数函数增长更快的函数,不能进行拉氏变换。5、常用函数的拉氏变换:拉氏变换的基本性质:1)线性性质若、,则。2)时域微分特性若,则、。3)时域积分特性若,则。4)延时特性(时域平移)若,则。5)s 域平移若,则。6)尺度变换若,则(a0) 。7)初值定理当 F(s) 为真分式时,;否则,(分别为多项式与真分式) ,。8)终值定理当 F(s)的全部极点在 s 左半平面(允许在s=0处有一阶极点,以保证终值存在)时,。9)卷积定理若、,则(时域卷积定理)、名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 25 页,共 39 页 - - - - - - - - - (s 域卷积定理)。10)s 域微分与积分若,则、。6、拉普拉斯逆变换: 部分分式展开法 (仅适用于F(s) 为有理分式情况)、围线积分法 (留数法)。部分分式法的实质是利用拉氏变换的线性特性,先将 F(s) 分解为若干简单函数之和,再分别对这些简单象函数求原函数。p1、 p2、 、 pn称 为F(s) 的 极 点 ; 分 子 多 项 式 也 可 以 表 示 为A(s)=(s-z1)(s-z2)(s -zm) ,式中 z1,z2, ,zm是 A(s)=0 方程式的根,也称F(s)的零点。p1,p2, ,pn既可以是各不相同的单极点, 也可能出现有相同的极点即有重极点;分母多项式的阶次一般高于分子多项式(mn),但也有可能 m n。7、设描述 LTI 系统的 n 阶微分方程为:若系统的起始状态为零,则,对上式两边同时取拉氏变换,得,有:系统函数为系统零状态响应的拉氏变换与激励的拉氏变换之比。当时,。H(p) 是一个算子, H(s) 是变量 s 的函数;H(s) 只描述系统的零状态特性, 而H(p) 既描述零状态特性,又描述零输入特性。集总参数 LTI 系统的 H(s) 为有理分式:z1、z2、 zm称为 H(s) 的“零点”;p1、p2、 pn称为 H(s) 的“极点”。8、 系统函数, 激励, 响应。响应(系统函数极点)(激励信号极点);(自由响应)(强迫响应)。9、频率响应特性 :是指稳定系统在正弦信号激励下,稳态响应随信号频率的变化情况。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 26 页,共 39 页 - - - - - - - - - 幅频响应特性: 幅度随频率的变化情况; 相频响应特性: 相位随频率的变化情况。,其中为幅频响应特性,为相频响应特性。10、滤波特性的分类:主要是通带与阻带的不同。11、全通网络 :幅频特性,对于全部频率的正弦信号都能按同样的幅度传输系数通过。极点位于左半平面,零点位于右半平面,且零、极点对于j 轴互为镜像。全通网络用于相位校正。最小相移网络 :极点全部在左半平面, 零点也全部在左半平面或j 轴上的网络,称为最小相移网络;含有零点在右半平面的网络称为非最小相移网络。非最小相移网络可代之以最小相移网络与全通网络的级联。12、若系统对任意的有界输入,其零状态响应也是有界的,则称此系统为(BIBO )稳定系统 。即对所有的,产生的响应,Me、Mr为有界正值。连续时间 LTI 系统 BIBO稳定的充分必要条件是: H(s)的收敛域包含虚轴; 连续时间因果 LTI 系统 BIBO稳定的充分必要条件是:H(s) 的极点全部在左半平面。由 H(s) 的极点分布判断因果LTI 系统的稳定性 :1)极点全部在左半平面, h(t )衰减,系统稳定;2)虚轴上有一阶极点,其他极点全部在左半平面,h(t )等幅振荡,系统临界稳定;3)有极点在右半平面,或虚轴上有二阶或二阶以上极点,h(t )增长,系统不稳定。13、拉氏变换与傅里叶变换的关系:名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 27 页,共 39 页 - - - - - - - - - 当00 时,f (t )是增长函数,不存在傅里叶变换;当00时,f (t )是衰减函数,存在傅里叶变换,;当0=0 时, f(t ) 为等幅或增幅振荡, 存在傅里叶变换 (包含奇异函数项),。名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 28 页,共 39 页 - - - - - - - - - 第五章傅里叶变换应用于通信系统无失真传输理想低通滤波器调制与解调1、幅度失真:系统对信号中各频率分量幅度产生不同程度的衰减,使响应各频率分量的相对幅度产生变化。相位失真:系统对信号中各频率分量产生相移不与频率成正比,使响应各频率分量在时间轴上的相对位置产生变化。线性系统:幅度失真与相位失真都不产生新的频率分量。非线性系统: 由于非线性特性对所传输信号产生非线性失真,非线性失真可能产生新的频率分量。2、信号的失真有正反两方面:1) 如果有意识地利用系统进行波形变换, 则要求信号经系统必然产生失真;2)如果要进行原信号的传输,则要求传输过程中信号失真最小,即要研究无失真传输的条件。无失真传输概念(即时域波形传输不变) :。信号无失真传输的条件 (对系统提出的要求) :1) (频域角度)系统的频率振幅响应特性是常数K,相位特性是通过原点的直线(群延时,相位要求即是群延时特性为常数),即;2) (时域角度)要求系统的冲激响应仍为冲激函数,即。3、理想低通滤波器:具有矩形幅度特性和线性相移特性(实际不可实现)。频域特性:若c